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ABSTRACT 

 The increasing presence and applications of composite materials in aerospace structures 

precipitates the need for improved Nondestructive Evaluation (NDE) techniques to move from 

simple damage detection to damage diagnosis and structural prognosis. Structural Health 

Monitoring (SHM) with advanced ultrasonic (UT) inspection methods can potentially address 

these issues. Ultrasonic coda wave NDE is one of the advanced methods currently under 

investigation. Coda wave NDE has been applied to concrete and metallic specimens to assess 

damage with some success, but currently the method is not fully mature or ready to be applied for 

SHM. Additionally, the damage diagnosis capabilities and limitations of coda wave NDE applied 

to fibrous composite materials have not been widely addressed in literature. The central objective 

of this work, therefore, is to develop a quantitative foundation for the use of coda wave NDE for 

the inspection and evaluation of fibrous composite materials. 

 Coda waves are defined as the superposition of late arriving wave modes that have been 

scattered or reflected multiple times. This results in long, complex signals where individual wave 

modes cannot be discriminated. One method of interpreting the changes in such signals caused by 

the introduction or growth of damage is to isolate and quantify the difference between baseline 

and damage signals. Several differential signal features are used in this work to quantify changes 

in the coda waves which can then be correlated to damage size and growth. Experimental results 

show that coda wave differential features are effective in detecting drilled through-holes as small 

as 0.4 mm in a 50x100x6 mm plate and discriminating between increasing hole diameter and 

increasing number of holes. The differential features are also shown to have an underlying basis 
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function that is dependent on the hole volume and can be scaled by a material dependent coefficient 

to estimate the feature amplitude and size holes.  

 The fundamental capabilities of the coda wave measurements, such as error, repeatability, 

and reproducibility, are also examined. Damage detection was found to be repeatable, 

reproducible, and relatively insensitive to noise. The measurements are found to be sensitive to 

thermal changes and absorbing boundaries. Several propagation models are also presented and 

discussed along with a brief analysis of coda wave signals and spectra. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Usage and Nondestructive Inspection of Composites in Aircraft  

 As composites see increased usage in aircraft components, especially critical load bearing 

structures, the high quality of composite components is essential for reliability and safety. The 

increase in composite usage from 2% in 1978 to more than 50% by weight in recent years is 

illustrated in Figure 1-1. Structural components must be free from defects, both production defects 

and in-service damage/degradation, that would significantly reduce the stiffness, strength, and 

design life. Regulatory agencies such as the Federal Aviation Administration (FAA) set limits on 

the minimum remaining strength of a component with damage [FAA 2009]. Figure 1-2 illustrates 

the conceptual design loads for increasing damage size. The minimum load is the estimated in-

service load which must be sustained, even with damage above the critical size. The limiting and 

ultimate loads are the sustainable loads of an equivalent structure with damage below the critical 

threshold and the detectable threshold respectively. The structure must be able to withstand the 

limiting load even with preexisting damage that grows to the critical damage threshold in between 

inspections. The estimated time for damage to grow from undetectable to critical therefore dictates 

an inspection schedule to ensure that any in-service damage is detected while it is in the subcritical 

stage [Fahr 2014]. 

 A damage tolerant design is required by the FAA for most civilian aircraft. The damage 

sizes that must be detected and the critical flaw sizes for each component are determined by a 

combination of analytical and experimental analyses [FAA 2009, Fahr 2014]. Figure 1-3  
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Figure 1-1. Increasing composite usage in commercial (blue diamonds) and military (black 

squares) aircraft by percent weight. [Compiled from various sources] 

 

 

 
Figure 1-2. Conceptual design loads for increasing damage size. Continued safe flight is 

required such that an aircraft can operate safely before the damage is detected. 

 

 

illustrates the reduction in strength of a component due to processing anomalies, damage, and 

operating conditions. All NDE methods have a “minimum detectable flaw size” capability and a 

“largest defect missed” limitation, with their statistical variability. FAA regulations require these 

to be taken into account when designing the inspection guidelines and schedules. On the other 

hand, composite structures have their inherent manufacturing damage thresholds. As a result of 
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these two considerations, composite structures are over-designed to compensate for these 

limitations [Mouritz 2012, Siddiqui 2015]. Improved performance can be obtained by doing the 

following: (a) Improve damage tolerance (design consideration), (b) improve damage resistance 

(material consideration), and (c) improve damage detection and characterization (NDT&E 

consideration). Increasing the sensitivity of nondestructive inspection techniques will allow for the 

decrease in the Allowable Damage Limit and hence reduce component overbuilding. 

 Nondestructive Inspection (NDI) of in-service aircraft requires grounding and disassembly 

while inspection of components during manufacturing can add to the production time and cost by 

as much as 50% [Mouritz 2012]. Structural Health Monitoring (SHM) systems are therefore of 

great interest to the aviation industry because in-situ monitoring would greatly reduce the required 

down time for inspections [Mouritz 2012, Karbhari 2013, Fahr 2015, Siddiqui 2015]. Improved 

sensitivity and characterization capabilities of NDI techniques will allow for longer periods 

between scheduled inspections or the use of optimal laminates because the subcritical damage 

could be detected in a timely manner.  

 

 

 
Figure 1-3. Conceptual diagram of designing with anomalies, damage, and other allowables in 

mind. 
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 When considering ultrasonic NDT&E/SHM, composites must be regarded as very different 

from metals. Composites tend to be dispersive and highly attenuative to ultrasound (due to both 

scattering and visco-elastic energy absorption), have low electrical and thermal conductivity, and 

have significant anisotropy. Composite damage is also multi-modal with different size scales, such 

as micro-cracks, delaminations, fiber failure, and matrix crushing to name a few. As a result, the 

damage detection also has to work for different modalities and size scales. Micro-cracks are sub-

millimeter in size while delaminations range in size from millimeters to centimeters in diameter 

spread over the inter-laminar region. There is a continuous need for further development of 

quantitative NDE techniques for composite inspection that address the technical challenges of 

microdamage (damage such as microcracking, fiber breakage, and fiber-matrix debonding) 

sensitivity, lay-up insensitivity, and quick, efficient inspection. [Schwartz 1997, Baker et al. 2004, 

ASTM 2009, Barbero 2011, ASTM 2012, Hsu 2013] 

 Nondestructive techniques are based on the detection of damage or defects by observing 

the change in one or more parameters of the technique being used. In the case of Ultrasonics, the 

differential parameter is often the arrival time or the amplitude of the received signal. There are a 

multitude of NDE techniques that have been developed over the past 50 years or so. Each has its 

specific field of applicability along with specific strengths and limitations, though there is overlap 

in sensitivity and accuracy of detection. NDE techniques can be divided into three large categories 

based on how the technique interacts with the test article. Selected techniques are shown in Figure 

1-4 organized by frequency of excitation and interaction type. 
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Figure 1-4. Frequency spectrum for selected NDE techniques. ESR = electron spin resonance, 

NMR = nuclear magnetic resonance. [Recreated and expanded from Schwartz 1997 & Jones 

1998] 

 

 

 The literature on the detection and characterization of damage in composites is staggeringly 

extensive; mostly due to the complex nature of composite materials and damage. The early 

literature has been reviewed by Schwartz (1997) and Jones (1998), while modern overviews of 

composite NDE as applied to aerospace structures are given by Mouritz (2012), Karbhari (2013), 

Fahr (2014), and Siddiqui (2015). There are multiple NDE techniques used with composites, and 

some of the most popular techniques fall into the categories of (a) visual inspection, (b) tap testing, 

(c) ultrasonics, (d) acoustic emission, (f) X-ray CT, (g) thermography, and (h) eddy current. 

Irrespective of the technique employed, the central objective is the accurate detection and 

localization of the smallest possible defect sufficiently in advance of a failure causing event. Note 

that for most techniques, the sensor must be directly over (or nearly) the damage. 

 Ultrasonic guided wave techniques (Rayleigh and Lamb waves) have been the subject of 

extensive research because the mechanical vibrations interact directly with damage and can travel 

farther than bulk waves [Michaels 2008]. Rose (2000) provides an overview of guided wave NDE 

[Rose 2000] while Cawley & Simonetti (2005) and Raghavan & Cesnik (2007) give overviews of 

guided wave SHM and Su et al. (2006) review guided waves for damage detection in composite 
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materials. Two major limitations of guided wave methods are that the methods are restricted to 

components that support their propagation and that for most, if not all, methods require identifying 

and interpreting individual modes and echoes [Micheals 2008]. Another common limitation is that 

the damage must be along the propagation path between the transducers unless an array of 

transducers is used. 

 Recently, coda waves have been proposed as a way to overcome the limitations of guided 

waves, which can be easily generated and don’t require the identification of specific modes/echoes 

[Michaels & Michaels 2005, Lu 2007]. The primary advantages of coda waves for SHM are the 

potentially increased sensitivity to small scale defects and the volumetric interrogation, which 

means that the damage need not be directly between the transducers to be detected. The primary 

drawbacks of this technique are the increased sensitivity to environmental effects (e.g. 

temperature) and the lack of theoretical/computational models to explain the effect of damage on 

the coda wave. 

 A coda wave (also referred to as a diffuse field) is a complex superposition of wave modes, 

both scattered from internal micro-structures and reflected from boundaries over a sufficiently long 

time period. A good, simple description is a late arriving wave in which specific wave modes are 

not separable or identifiable. More technical definitions include a wave field created by: 1) 

statistical summation of random walk ray-paths [Snieder 2006], 2) pseudo-random diffusion of 

acoustic energy through a highly scattering medium [Anugonda et al. 2001], or 3) equal amplitude 

excitation of all independent wave modes for all propagation directions and frequencies with 

uniformly distributed random phases [Egle 1981]. A wave field as strictly defined by Egle (1981) 

is rarely realizable in practice [Weaver & Lobkis 2000]. 
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 Even though these long duration, multiply scattered waveforms have been known to the 

NDE community for nearly four decades [Vary 1982], their sensitivity and reliability are 

questionable because the complex waveforms resulting from coda wave NDE are difficult to 

analyze, interpret, or simulate with physical models. Traditional ultrasonic NDT&E relied on a 

deterministic wave and its classical properties such as wave velocity, attenuation, and reflection 

coefficient. These properties are physically understandable and mathematically defined. In the case 

of coda waves, these properties become undefinable or inapplicable as a coda wave is not a wave 

but an ensemble sum of wave modes arriving at the receiver from multiple directions and with 

various time delays. 

 Although traditional NDT&E has focused on detection, localization, and characterization 

of the smallest possible defect, there has been a growing recognition in recent years that the largest 

defect missed and the probability of detection (POD) play a significant role in the assessment of 

structural health [Bond 2015]. Structural damage may be missed during an inspection due to any 

one of a multitude of factors (e.g. frequency of interrogating signals, low signal-to-noise ratios, 

large raster scan steps, and of course human factors). 

 The reliability of an NDT&E/SHM method is quantifiable by the POD, which takes into 

account both the physical limitations of detecting small damage and the measurement limitations 

due to variability that can mask damage [Adams 2007]. The objective is to estimate the typical 

number of defects missed for a given damage type and size, and thus the largest damage missed 

by a particular technique. Often POD studies include a large number of representative samples 

with various flaw types and sizes as well as a large number of human operators [Fahr 2014]. Since 

most SHM systems are typically automated, the system performance is potentially better described 

by the receiver operating characteristic (ROC) which plots the true positive rate (also referred to 
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as the POD) versus the false positive rate based on varying the amplitude threshold between 

damaged/undamaged for a specific damage index. This is potentially a better measure because it 

not only measures the likelihood of missing damage of a certain type/size but also the likelihood 

of false detection due to benign effects (e.g. environment, loading, or acoustic noise). The 

performance (ROC) of a coda wave SHM system for the detection of drilled through-holes in an 

aluminum plate in the presence of environmental changes is discussed by Lu and Michaels [Lu 

2007, Michaels 2008]. 

 Coda wave NDE is a paradigm change from traditional ultrasonic NDE where a coherent 

ballistic (direct propagation) wave followed a mathematically traceable path and everything could 

be described by a deterministic physical model as compared to an indeterministic, incoherent, 

wave field without a definable travel path. Traditional definitions of NDE parameters such as 

velocity, attenuation, and wavelength, which are used widely in ultrasonic NDE, become 

undefinable in this new paradigm due to the indeterministic nature of the wave field. Perhaps the 

name “coda wave” is unfortunate since it leads people to try to analyze and understand the coda 

wave signals as actual propagating waves as opposed to the time-varying superposition field 

sampled at a specific point that they actually are. This thesis addresses questions such as: 1) what 

the coda wave is comprised of, 2) differentiating coda waves from what has traditionally been 

referred to as noise, 3) the subtle, nearly unobservable changes in the waveform caused by damage, 

and 4) what part of the waveform carries the damage information. 
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1.2 Motivation and Problem Statement 

 Guided wave interrogation has been extensively studied for both NDT&E and SHM 

interrogations of composite structures, but suffers from several major limitations. Coda wave 

SHM, on the other hand, is in the conceptual stage of development and shows promise, but it has 

to undergo extensive scrutiny before it can be considered seriously. This thesis focuses on several 

aspects of coda wave interrogation of CFRP plates to evaluate its capabilities and limitations. 

There are several attractive reasons to consider coda waves for composite SHM: 1) compared to 

ultrasonic guided waves, coda waves can almost always be generated regardless of geometrical or 

material complexity, 2) coda wave generation and reception is simple and structure independent, 

and 3) coda waves can potentially interrogate a larger complex volume with greater sensitivity 

than other methods, as noted by Lu (2007). That does not mean that an entire 787 wing assembly 

can be interrogated by a single transmitter-receiver pair. There is a limit to the propagation of coda 

waves just as there is for any physical phenomenon. Based on the above, coda wave NDT&E has 

a lot of potential for the interrogation of composite structures and is worthy of further investigation. 

 Although coda wave methods have shown some sensitivity to damage in concrete and 

metals [Lu 2007, Planes & Larose 2013], there are several technical obstacles to the adoption of 

the technique in general and for composite materials specifically. There are two aspects to the 

technical obstacles hindering the adoption of coda waves for NDT&E and SHM; the first aspect is 

the sensitivity to benign changes while the second is the analysis difficulties. It is well established 

that coda waves are sensitive to benign changes (unintended changes in the measurement system 

that are not damage but may affect the damage indices), such as environmental effects, loading, or 

transducer misplacement, that may mask damage [Lu & Michaels 2005, Snieder 2006, Weaver & 

Lobkis 2000, Zhang et al. 2013b]. It is also difficult to analyze the complex waveforms and 
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correlate changes to damage in a reliable and quantifiable manner. This is due in part to the 

qualitative manner in which damage has been typically introduced in previous coda wave 

applications (Alkali-Silica Reaction damage and stress/thermal induced micro-cracking in 

concrete) while the other part is the lack of good differential signal features to quantify the changes 

in the waveforms caused by damage. 

 It is because of the advantages and limitations of coda waves that this thesis focuses on 

developing a quantitative foundation for the use of coda wave NDE/SHM for the inspection and 

evaluation of fibrous composite materials. This work includes: 1) a demonstration of fundamental 

ultrasonic capabilities of coda waves such as: linearity, reciprocity, and reproducibility, 2) 

measurement of the spread and attenuation of coda wave acoustic energy in plates, 3) correlation 

of damage1 in laminates to differential signal features in a quantifiable and reliable manner, 4) 

determination of the sensitivity of coda wave differential features to damage in fibrous composite 

plates, and 5) the first steps towards sizing and characterizing defects in fibrous composite plates. 

For the purpose of this thesis, drilled holes are used in the place of true damage since they are 

engineered discontinuities whose location, size, and quantity can be controlled. 

 

 

1.3 Thesis Outline 

 The remainder of this thesis is organized as follows. Chapter 2 presents a review of the 

existing literature on diffuse fields and coda waves as they pertain to nondestructive evaluation 

and details the state of the art in order to provide a foundation upon which the work in this thesis 

                                                 
1 The use of the word “damage” here refers to drilled holes. Even though it is understood that a drilled hole is not 
damage, the term “damage” has been used colloquially by many authors, most notably Dr. Jennifer Michaels, to 
refer to introduced discontinuities (whether engineered or otherwise) in samples. 
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builds. The review discusses the geophysical origins, the prior applications to NDT&E, as well as 

the parallel terminology that exists and is often interchanged. Overviews of wave propagation and 

scattering in composites and Structural Health Monitoring are also presented to provide a wider 

background for this work. The scope and objectives of the work presented in this thesis are placed 

in the context of previous research at the end of the chapter. 

 Chapter 3 presents a summary of the theory involved with coda wave propagation, decay, 

and measurements. First, several models found in literature are reviewed and discussed. The 

various measures of attenuation and temporal decay are then presented with a discussion as to the 

applicability of these measures to coda wave analysis. Lastly, various differencing parameters used 

to quantify changes in coda waves are examined along with the applicability of these paramaters 

to different quantities of interest (thermal vs damage). 

 Chapter 4 describes the experimental configurations, materials, and transducers used to 

investigate the subjects of this thesis. First, the materials used, sample dimensions and types of 

engineered damage are described. Then the experimental system is described and characterized. 

This includes basic transducer characterization and a discussion and measurement of the signal to 

noise ratio as well as a demonstration of coda wave reciprocity and an analysis of coda wave 

linearity. The data collection process is also discussed. Next a brief analysis of the coda wave 

waveforms and spectra is presented which includes a discussion of the scattering regimes 

encountered in Chapter 6. Finally, an overview of the error analysis approach used in this thesis is 

presented and discussed. This chapter is intended to be an overview of the experiments discussed 

in this thesis since each chapter is a different set of experiments. 

 Chapter 5 presents the experimental results for the propagation, attenuation, and boundary 

effects of coda waves in plates of several materials. The spreading function of coda waves in plates 
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is explored by examining changes in several wave parameters with increasing transducer 

separation and fiber angles. Several methods of measuring coda wave attenuation are then 

presented and the implications of each are discussed. The linearity of the spreading and attenuation 

parameters as well as their sensitivity to the pulser-receiver damping setting are then examined. 

Finally, the variation of the spreading and attenuation parameters due to the plate boundaries is 

presented and discussed. 

 Chapter 6 presents the experimental results for the quantitative detection and sizing of 

drilled through holes in plates of several materials. The definition of the five differential features 

used and the experimental error are discussed. Validation of the experimental system and signal 

processing against previously published work is presented. A function describing the behavior of 

the residual energy features is then derived. A comparison of the feature behavior for the several 

materials and introduced damage types is discussed and trend lines are fit to the data. The predicted 

functions are then fit to the experimental data and an estimate of defect sizing accuracy is 

presented. Towards the end of Chapter 6, the linearity of the differential features and effect of 

pulser-receiver damping are examined in addition to the reciprocity of defect detection. 

 Chapter 7 presents the experimental results for the measurement of thermally induced 

relative velocity variations in plates of several materials and for several transducers. The theory of 

waveform dilation (relative velocity change) caused by thermal loads and methods to measure the 

dilation are presented and discussed. A brief analysis of the differences in coda waveforms due to 

different transducer types and fiber orientations is presented. Next the measured relative velocity 

variations are examined, the results from different transducers and fiber orientation are compared, 

and the ramifications of using different transducers are discussed. The chapter ends with the 



www.manaraa.com

13 

 

 

 

presentation and discussion of the significance of phase cancelation across the transducer face is 

examined 

 Chapter 8 concludes this thesis and provides recommendations for future research. 
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CHAPTER 2. BACKGROUND 

 This chapter serves as a review of diffuse fields and coda waves to provide the necessary 

background for the research presented in this thesis. First the several definitions of diffuse fields 

and coda waves are presented and discussed along with the distinguishing characteristics of coda 

wave NDT&E that sets it apart from several other NDT&E methodologies. Second, a brief 

overview of Acousto-ultrasonics, which is very closely related to coda wave NDE, is given. Next, 

an overview is given of the development and usage of coda waves as applied to the geophysics 

community. Then the literature involving that development and application of coda waves for the 

purpose of NDE is presented and discussed. Following this, the literature involving the application 

of coda wave NDE to fibrous composite materials is discussed. Next, a brief overview of wave 

propagation and scattering in fibrous composite materials is given in order to provide a foundation 

for interpreting the multiply scattered coda wave. Then a brief overview of SHM is given, with 

particular focus on guided wave SHM of fibrous composite materials is presented in order to 

provide a comparison of current capabilities with potential coda wave capabilities. Finally, the 

contributions of this thesis are placed within the context of the current state of the art regarding 

coda wave NDT&E. 

 

2.1 Structural Health Monitoring 

Monitoring critical structural components over their lifetime in order to improve early detection 

of damage and monitor damage growth is of great interest in many fields such as civil infrastructure 

and aerospace [Achenbach 2000, Karbhari 2013]. Structural health monitoring (SHM) involves 

the in-situ monitoring of structures to assess their integrity in near real time. An ideal SHM system 

should be able to detect, characterize, and locate damage in a structure (damage diagnosis) as well 
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as monitor its evolution with time and estimate the severity of the structure’s reduction in 

performance (structure prognosis) [Adams 2007]. 

 SHM is of great interest to the aviation industry because of the tight restrictions on 

structural damage and failure. Application of an SHM system in future aircraft will contribute to 

reduced maintenance costs, reduced aircraft down time, and improved safety. With the increasing 

use of composite materials in main structural members and the complex nature of composite 

damage formation and growth, the interest in the development of SHM systems is also increasing. 

The most widely applied SHM methodology for composite aerospace structures is guided wave 

ultrasonics, in which a stress wave travels along a component and changes in the received wave 

can be used to detect damage. The early literature on ultrasonic SHM has been reviewed by [Ihn 

& Chang 2003, Rose 2004, Giurgiutiu & Cuc 2005] while the application of SHM methods to 

aerospace structures is well reviewed by [Veidt & Liew 2013]. 

 Ultrasonic interrogation methods are of interest for SHM due to their proven ability to 

detect and characterize flaws, as well as their ability to propagate long distances while still 

remaining sensitive to flaws [Michaels 2008]. Ultrasonic methods can be characterized as either 

active or passive. Passive methods such as acoustic emission record elastic waves generated by 

external sources such as propagating damage, leaks, or impacts. Active methods use transducer 

pairs to send and receive elastic waves. Active methods can be categorized as direct, where the 

structural assessment is based solely on the current measurement, or differential where the 

assessment is based on comparing the current measurement to a previous measurement. These 

methods can be characterized as local or global. A local method only examines a small area, or hot 

spot (known site of damage initiation, that is of particular interest while a global method examines 

a large area [Adams 2007, Lu 2007, Michaels 2008]. 



www.manaraa.com

16 

 

 

 

 The limitation of interrogating a structure with guided waves is that they can only be used 

in structural components that support their propagation. Complex geometries make it difficult to 

generate guided waves and difficult to interpret the results since a further restriction on guided 

wave SHM is the need to identify specific wave modes and their arrival time. This is made all the 

more difficult by the multiple reflections that are likely to occur in hot spot regions. 

 An alternative ultrasonic method is the use of coda waves that are easily excited in a 

structure regardless of its geometry or complexity. Coda waves are generated by multiple 

reflections off of boundaries and multiple scattering due to microstructure. These waves 

reverberate throughout the structure, flooding it with energy, and effectively interrogating the 

entire structure. The use of these waves for structural health monitoring has been discussed by [Lu 

2007, Michaels 2008, Sabra et al. 2008]. 

 

2.2 Wave Propagation and Scattering in Composites 

 Wave propagation and scattering in fibrous composite materials is significantly more 

complicated than metallic materials. Fibrous composites are non-isotropic, visco-elastic materials 

with periodic layers and highly scattering microstructure. The length scales for an example 

composite laminate are shown in Figure 2-1. 

 The propagation of elastic waves in generally anisotropic, homogeneous media yields three 

distinct bulk wave modes with directionally dependent velocities as described by the Christoffel 

equations [Auld 1973, Achenbach 1976, Rose 1999]. The directionally dependent velocities of the 

three orthogonal wave modes are shown in Figure 2-2 for a generic quasi-isotropic carbon-

fiber/epoxy laminate, assuming an effectively homogeneous material model. Wave propagation in 

layered media yields further complications and is well discussed by Redwood (1960), Ewing  
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Figure 2-1. Various length scales of a typical Carbon Fiber Reinforced Polymer. 

 

 

(1957), and Brekhovskikh (1980). Specific treatments of wave propagation in fibrous composites 

are given by Rokhlin et al. (2011) and Verma (2013) among others where periodic layering and 

homogenization are discussed. The effect of periodic layering, as occurs in most fibrous composite 

materials, on wave propagation can be described by Floquet waves, which may or may not exist 

in the laminate based on incident angle and frequency. The Floquet waves also describe a 

“homogenization” region where all wave modes exist for low frequencies and near normal 

incidence. The above analytical models for wave propagation were derived for a linearly elastic 

material, and although composite are visco-elastic in nature, the models apply equally well due to 

the elastic/visco-elastic correspondence principle [Achenbach 1976, Khazanovich 2008].  

 Apart from the challenges of wave propagation, composites also exhibit significant 

apparent attenuation caused by both internal scattering and visco-elastic absorption. Due to the 

various length scales found in a typical composite laminate (Figure 2-1) and the directional 

dependence of the wave velocities (Figure 2-2), several scattering regimes (Table 2-1) may be 

exist, especially when damage is present. Experimental demonstrations of scattering in composite 

materials for layer scattering, fiber scattering, and backscatter are given by Rokhlin et al. (2011), 
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Lee (1994), and Stenström (2008) respectively, while examples of experimental attenuation in 

composites are given by Verbis et al. (2001) and Kinra & Dayal (1988). Numerical models of 

scattering and attenuation of multiple wave modes in carbon-fiber/epoxy laminates are given by 

Biwa et al. [Biwa 2001, Biwa et al. 2003, Biwa et al. 2007, Sumiya et al. 2013], which are based 

on multiple scattering theories presented in multiple publications over the last forty years (such as 

[Bose & Mal 1974, Varadan et al. 1986, Yang & Mal 1994, Liu & Kriz 1998, Martin 2006, Conoir 

& Norris 2010]). The models developed by Biwa et al. show considerable promise for the modeling 

of coda wave generation and propagation in fibrous composites. 

 

 
Figure 2-2. Velocity profiles for the three orthogonal wave modes in unidirectional CFRP. 

[recreated from Rokhlin, Chimenti, and Nagy 2011] 

 

 

Table 2-1. Scattering regimes of ultrasonic waves. [modified 

from Eisminger and Bond 2011] 

Regime a/ Ultrasonic Attenuation 

Rayleigh << 1  = A1D3f4 

Stochastic ≈ 1  = A2Df2 

Specular >> 1  = A1D 

 = ultrasonic wavelength 
a = average cross-section diameter of the scatterer 

 = ultrasonic attenuation 

An = elastic moduli dependent coefficient 
f = ultrasonic frequency 
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2.3 Coda Wave Definition and Usage 

 Several terms exist that refer to a long duration wave field that has been scattered multiple 

times by internal structures and external boundaries, namely: Coda wave, Diffuse field, and 

Acousto-ultrasonic wave. Coda waves were first explored by the geophysics community starting 

from the 1960’s [Aki 1969, Herraiz & Espinosa 1987] and began to see NDE applications in the 

2000’s [Planes & Larose 2013]. Diffuse fields were first used by the NDE community (the idea 

originated with room acoustics) in the 1980’s [Weaver & Lobkis 2006] and have seen continued 

use, and after Lobkis & Weaver discovered that the Green’s function could be reconstructed from 

the diffuse field [Lobkis & Weaver 2001], diffuse fields were adopted by the geophysics 

community [Weaver & Lobkis 2006]. Acousto-ultrasonic waves were first used by the NDE 

community to investigate the microstructure of composite materials in the 1980’s [Vary & Bowles 

1979, Vary 1991] and have seen continued, if limited use. Currently, both coda waves and diffuse 

fields are used by both the NDE and geophysics communities, and the terms are used somewhat 

interchangeably. 

 Although both of the terms “coda waves” and “diffuse fields” nominally refer to the same 

phenomenon and are used somewhat interchangeably, significant differences exist in the several 

definitions provided in literature. The early definition of coda waves was provided by Aki as: Late 

arriving elastic waves with no discernable wave modes which are likely caused by multiple 

scattering events [Aki 1969, Aki & Chouet 1975, Herraiz & Espinosa 1987]. In this definition, the 

reference to late arriving waves is used to describe the arrival of significant acoustic energy after 

the arrival of the ballistic2 p- and s-waves as indicated in Figure 2-3. Snieder provided a slightly 

different definition for coda waves based on the assumption of multiple scattering. He defines coda 

                                                 
2 The use of the term “ballistic” in this case refers to a direct, line-of-sight propagation path between the source 
and the receiver. 
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waves as: late arriving elastic waves comprised of multiple wave modes that have each taken 

different source to receiver paths due to multiple, strong scattering [Snieder 2002, Snieder 2006]. 

This definition allows for the presence of coda waves without a clear ballistic arrival and lends 

itself to analysis by a statistical random walk model. Examples of coda waves collected for NDE 

purposes are shown for Plexiglas and concrete in Figure 2-4 and Figure 2-5 respectively.  

 

 
Figure 2-3. Example seismogram showing the arriving P and S waves and the resulting coda 

from each. [Herraiz & Espinosa 1987] with permission of Springer3” 

 

 

 
Figure 2-4. Typical coda waveform collected from 61x61x1.25 cm Plexiglas plate using 1 MHz 

epoxy backed piezo-discs in through transmission (edge-to-edge). Reprinted with permission 

from [Roberts P. M., Phillips W. S., and Fehler M. C., 1992, “Development of the active doublet 

method for measuring small velocity and attenuation changes in solids,” J. Acoust. Soc. Am., vol. 

91, no. 6, pp. 3291-3302.]. Copyright 1992, Acoustic Society of America. 

                                                 
3 Original title of Figure 2-3 is: “Figure 1 Sample seismogram, showing P- and S- codas, recorded at station GUD 
(Madrid, Spain), with an ML = 3.7 at an epicentral distance of 337 km.” 
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Figure 2-5. Typical normalized coda waveform collected from 20 cm of concrete using 500 kHz 

longitudinal transducers in through transmission. The best fit diffusion envelope (red dashed 

line) was determined by fitting the diffusion equation to the waveform. Reprinted from [Planes 

& Larose 2013] 

 

 
Figure 2-6. Typical diffuse waveform collected from 1.5x1.5x7.5 cm aluminum 6061 billet 

using pinducers in one-sided pitch-catch configuration. The first several hundred micro-seconds 

of the waveform have been discarded. Reprinted from [Weaver & Lobkis 2000] 

 

 

 The earliest definition for diffuse fields in solids given by Egle as: a field in which the 

modes of all propagation directions and frequencies are excited with random amplitudes and 

random, but evenly distributed phases [Egle 1981]. This definition was immediately modified by 

Weaver to be: a field in which all possible propagation modes are excited with equal energy and 

uncorrelated phases [Weaver 1982]. This definition is still one of the most widely cited, but 

primarily in the geophysics community. An example of a diffuse field waveform collected by 
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Weaver is shown in Figure 2-6. The main issue with the previous definitions of a diffuse field is 

that they are not realistically achievable in the majority of cases due to energy loss mechanisms. 

Nearly twenty years later, Anugonda et al. examined the diffuse field in terms of the propagation 

of acoustic energy through a highly scattering medium as a diffusion process [Anugonda et al. 

2001] which has since become the standard definition of diffuse field in the NDE community.  

 Several years after the introduction of the diffusion model, Michaels & Michaels refer to 

the signals used in their work as “diffuse” yet they define the term using elements of both previous 

coda wave definitions and diffuse field definitions [Michaels & Michaels 2005]. An example of 

the waveforms collected by Michaels & Michaels is shown in Figure 2-7. Subsequent papers refer 

to their signals as coda waves, yet show the diffusion envelope such as Planes & Larose (2013) as 

shown in Figure 2-5. It is clear that there is some ambiguity concerning what term to use when 

referring to long duration waveforms without discernable wave modes that seem to be well 

described by the diffusion equation. As can be seen in figures below (Figure 2-4 - Figure 2-8), 

although the waveforms vary with material and geometry, all show the same basic behavior and 

should be unified under a single name. Note that the waveform collected by Weaver (Figure 2-6) 

begins collection right after the peak of the diffuse envelope. 

 

 

 
Figure 2-7. Typical normalized diffuse waveform collected from a 5x15.2x0.64 cm aluminum 

6061 plate using 2.2 MHz epoxy backed piezo discs in one-sided pitch-catch. [Michaels & 

Michaels 2005] 
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Figure 2-8. Typical diffuse waveform collected from a unidirectional SiC fiber/ RBSN CMC 

tensile specimen with 2.25 longitudinal transducers in one-sided pitch-catch. [Kautz 1993] 

 

 

 The definition of coda wave used in this thesis is as follows: A long duration waveform 

(typically hundreds of microseconds) that contains no discernable wave modes, is caused by 

multiply scattered and reflected wave modes that superimpose at the receiver, and is well fit by 

the diffuse field envelope. This definition is general enough to include the previous work in both 

diffuse fields and coda waves, yet is enough to distinguish coda waves from other NDE methods 

and waveforms. 

 Current analysis methods of coda wave NDE are no way dependent on knowing what wave 

modes are present in the structure, the path they took, or the geometry. This approach by previous 

researchers is due to the complexity of the signals caused by different modes arriving from all 

different directions with various phases, which interfere with each other and superimpose to create 

the coda wave. Several of the different possible wave types and ray paths are shown in Figure 2-9. 

The bulk waves generated by the input transducer will scatter multiple times, either off of the 

boundaries or the internal structure. Plate waves can be generated by the interaction of the 

longitudinal waves from the transducer and the shear waves generated by the transducer edges, but 

this is more prevalent for thin plates (less than a few millimeters). The plate/guided waves can be 

reflected multiple times for various paths between source and receiver. Coda wave analysis 
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methods are dependent, however, on repeatable system transfer functions such that the only 

difference present in measured signal compared to the baseline signal is the effects of damage. The 

multiple components of the system transfer function are shown in Figure 2-10. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2-9. Conceptual diagram of the several wave propagation aspects that superimpose to 

form the coda wave, where a) shows the longitudinal waves generated by the transducer, the 

multiple modes generated by the transducer edges, and the possible plate waves generated, b) the 

multiple scattering due to boundaries (red) and internal structures (green), and c) various possible 

guided wave propagation paths. 

 

 

 
Figure 2-10. Block diagram for the linear system model describing the generation of coda 

waves. 
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2.4 Comparison with Selected Traditional Ultrasonic NDE Techniques 

 Coda wave analysis is currently completely independent of material, geometry, and mode 

identification or ray tracing. Since coda wave analysis utilizes waveform differencing parameters, 

the differences due to damage can be detected regardless of the user’s knowledge of the structural 

properties or which wave modes superimpose to make coda waves. That is not to say that the same 

damage in different structures will yield similar amplitudes for the differencing features. The 

waveforms themselves can be significantly different for different applications as demonstrated 

above. Further analysis into the various components that comprise the coda wave may lead to a 

model to describe the behavior and predict the diagnosis/prognosis capabilities, but that is a subject 

for future investigations and is not considered in depth within this thesis. Analysis of the various 

wave modes is expected to be difficult since each application of coda waves (e.g. plate vs. complex 

geometry) is significantly different. 

 When coda waves are applied to plate-like structures and materials with a large degree of 

internal structure causing scattering, questions naturally arise as to what comprises the coda waves 

and how similar the coda wave analysis is to current methods: because plates are used in this 

research, plate waves may be the dominant component of the coda wave signals; Since coda waves 

are typically due to scattering, how is the signal different from backscatter or acousto-ultrasonic 

signals; and finally, since the signals seem noisy, a contrast to ultrasonic noise must be made. A 

summary of the comparison between coda wave NDE and previous methods is presented in Table 

2-2. 

2.4.1 Ultrasonic Lamb and Rayleigh waves 

 Guided waves (primarily Lamb and Rayleigh) are intimately dependent on the boundaries 

of the media in which they propagate. Lamb waves require a plate-like structure were the thickness 
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is comparable to the wavelength and when this thickness is exceeded the waves propagate as 

Rayleigh waves. Good overviews of the theory and application of guided waves are given by 

Viktorov (1967) and Rose (1999). In contrast to this, coda waves can be generated in non-plate 

like structures and coupling a secondary object to the surface in the propagation path does not fully 

disrupt the coda wave, therefore, coda waves are not solely guided waves. Since guided wave are 

multi-modal, the majority of guided wave systems need to be tuned to the specific material and 

thickness of the structure to be interrogated and are excited with a toneburst to select specific 

modes. This is done for both traditional angle-beam transducers and PZT wafers [Rose 1999, 

Viktorov 1967, Lu 2007, Michaels 2008, Yu & Leckey 2012]. Generation of coda waves requires 

no special tuning, configuration, or input. Plate waves are characterized by retrograde elliptic 

particle motion at the surface while coda waves have no defined particle motion at the surface or 

otherwise. The final difference between guided waves and coda waves is arrival time of the 

acoustic energy. Guided wave methods typically look at acoustic energy on a time scale of tens to 

hundreds of microseconds while coda wave analysis looks at acoustic energy on a time scale of 

hundreds to thousands of microseconds for the materials and geometries considered in this thesis. 

 While it is true that a coda wave signal could potentially be comprised solely of multiple 

guide wave modes, which is unlikely given how well the diffusion equation describes the coda 

waveform, a coda wave analysis is not dependent on the type and number of guided wave 

modes/reflections nor is it dependent on the inspector’s knowledge of such things. Lu attempted 

to analyze the coda waveform in small aluminum plates from the standpoint that they were a 

superposition of guided wave modes [Lu 2007]. His comparison of the performance (ROC) of this 

method with the differential signal features demonstrated its inferior detection capabilities, which 

indicates that superposition of guided wave modes is not the best approach. 
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Table 2-2. Comparison of coda wave NDE with other ultrasonic NDE methods. 

Method Characteristics of Method Characteristics of Coda Wave Reference 

Guided 

Waves 

-Require a plate-like structure -No geometry requirements Viktorov 1967, Rose 

1999 

-Difficult to generate in complex 

structures 

-No difficulties with complex 

structures 
Lu 2007, Micheals 2008 

-System is often tuned to the 

material and thickness 

-No tuning Viktorov 1967, Rose 

1999, Lu 2007, Michaels 

2008,Yu & Leckey 2012 

-Typically excited with toneburst -Typically excited with spike or 

chirp 
Yu & Leckey 2012 

-Retrograde elliptic particle 

motion 

-No defined particle motion Viktorov 1967, Rose 

1999 

Backscatter 

-Generally pulse-echo -Normal incidence pitch-catch Goebbels 1994, Ghoshal 

& Turner 2001, 

Margetan 2012 

-Single scattering -Multiple scattering Margetan 2012, 2016 

-Backward scattering -Back and forward scattering Goebbels 1994, Ghoshal 

& Turner 2001, 

Margetan 2012 

-Caused by microstructure -Caused by microstructure and 

boundaries 

Ghoshal & Turner 2001, 

Margetan 2012 

-A-scan signal relating to 

specific location/depth 

-Signal relates to a volume 
 

Acousto-

ultrasonics 

-Diffuse-like wave -Diffuse-like wave Fahr 2014 

-Acoustic Emission receiver -Any type of receiver Vary 1990 

-Temporary dry coupling -Permanent/semi-permanent 

coupling 
Vary 1990, ASTM 1997 

-Parameters from single 

waveform – AE based 

-Differential features from 

multiple waveforms 
Vary 1990, ASTM 1997 

-Intended to evaluate 

microstructure 

-Intended to detect damage 
Vary 1988, Vary 1990 

Noise 

-Random, not repeatable -Very repeatable  

-Transducer noise -Signal still exists after 

deconvolving the system transfer 

function 

 

-Not reciprocal -Reciprocal  

-Digitization noise is very small 

amplitude (typically a few bits) 

-Coda wave signal is large 

amplitude (nearly full bit range) 
 

 

 



www.manaraa.com

28 

 

 

 

2.4.2 Ultrasonic Backscatter 

 In a scattering environment, it is beneficial to define and segregate several different types 

of scattering, namely: single, multiple, forward, backward, coherent, and diffuse. A diagram of the 

different scattering types is shown in Figure 2-11. Single/multiple refers to whether one or more 

scatterers were encountered during propagation from transmitter to receiver. Backward scattering 

is used to refer to describe scattered waves that have a propagation direction opposite to the 

incident wave, and thus are effectively propagation “backward” towards the transmitter. The term 

forward refers to the general direction away from the transmitter such that when a wave is scattered 

multiple times, the net travel is towards a second transducer. Coherent scattering is used to describe 

scattered waves whose propagation direction and phase are aligned with those of the incident wave. 

Diffuse scattering describes the opposite of coherent scattering. Even though the term “diffuse” is 

used by many authors, it can cause confusion as it can refer to several different phenomena, such 

as: the definition provided above, scattering where the wave length is much larger than the 

scatterer, or the diffusion of acoustic energy through a medium. 

 Backscattering is typically defined for a pulse-echo measurement when the input pulse is 

scattered during propagation and a portion of the energy returns to the transceiver [Goebbels 1994, 

Ghoshal & Turner 2001, Margetan 2012]. The time of flight for backscattered signals tend to be 

relatively short as the backscatter is typically generated by single scattering events from the 

microstructure and thus involve shorter sonic travel paths4. Coda waves differ significantly from 

the backscatter definition even though both are caused by scattering from microstructure 

(backscatter entirely and coda wave partially). Coda waves are a collection of multiple, diffuse, 

forward scattered waves that sample a larger volume than the conical pulse-echo beam path. 

                                                 
4 Private communications. Frank Margetan, Iowa State University, April 2016. 
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Figure 2-11. Diagram of different scattering terminologies. 

 

 

2.4.3 Acousto-ultrasonics 

 It is arguable that the origin of coda wave NDE can be found in Acousto-ultrasonics (AU) 

as both methods utilize diffuse-like waves to inspect samples. It is clear, however, that coda wave 

analysis developed separately from AU [Aki 1969, Vary 1988, Roberts et al. 1992, Snieder 2006]. 

Differences between the methods exist, although several may be written off as a matter of 

semantics. In the truest sense of the method, AU requires an Acoustic Emission (AE) receiver 

while coda waves do not [Vary 1990, Planes & Larose 2013]. AU transducers are typically dry-

coupled to a part in a temporary manner while coda wave transducers are permanently or semi-

permanently attached while all data is collected. The most significant difference between the 

methods lies in the processing of the waveforms and the intent of the method. AU is primarily 

concerned with the propagation efficiency of a single waveform and microstructure evaluation 

(though it is often used for damage detection) while the coda wave method is a comparative method 

that is primarily concerned with damage detection through measuring differences in the 

waveforms. 
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2.4.4 Ultrasonic Signal Noise 

 A simple and widely used definition of noise for ultrasonic signals is any undesired signal 

component that obscures the signal of interest [Oppenheim & Schafer 1975]. The undesired signal 

components may come from a variety of sources (such as electronic receiver noise, digitization 

noise, or scattering noise) and may be either random or systematic. Typically, noise frequencies 

are either higher or lower than the frequencies of the signal of interest and can be eliminated with 

a band-pass filter. Random noise can be minimized during collection with signal averaging, but 

this has no effect on systematic, coherent noise. Non-random, coherent noise is typically due to 

scattering or transducer noise. In the case of transducer noise, the transducer transfer function can 

be deconvolved to eliminate the noise. The scattering noise is exactly what comprises the coda 

wave so, by the simple definition of noise provided, it is not noise at all. Coda waves are fairly 

easy to differentiate from noise: 1) the coda waves are repeatable and therefore not random noise, 

2) when the transducer transfer functions are deconvolved the coda wave still exists and therefore 

is not transducer noise, and finally 3) the coda waves are reciprocal while non-scatter noise is not. 

 

2.5 Coda Waves and Diffuse Fields in Acusto-Ultrasonics 

 The acousto-ultrasonic approach to NDE was first proposed by Vary and Bowels to 

examine the combined effect of all subcritical flaws and microstructural anomalies of fiber 

composites [Vary & Bowles 1979]. This method quickly became very popular and resulted in a 

multitude of publications attempting to measure everything from elastic constants [Minachi & Hsu 

1993], bond strength [Fahr 2014], and materials degradation [Vary 1988], to fatigue life prediction 

[Srivastava & Prakash 1987]. The fundamental hypothesis behind this method is that better stress 

wave energy transfer corresponds to increased quality, strength, and fracture resistance [Vary 
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1988]. To this end, the energy transfer efficiency of acousto-ultrasonic signals is measured with 

stress wave factors (SWF), which are defined based on acoustic emission parameters such as 

number of counts or energy (MARSE). A typical experimental configuration is shown in Figure 

2-12 [ASTM 1997]. Note that the sensors are temporarily coupled to the specimen and as such, 

there are issues of consistency, repeatability, and reproducibility. Analysis and recommendations 

for minimizing these issues have been presented by several authors [Mazzeranghi & Vanghi 1999, 

Gyekenyesi et al. 2002, Dugmore et al. 2002]. Due to the indeterminate nature of the AU 

waveforms, questions quickly arose as to how the signals were formed. Several publications 

explore the theoretical basis for AU from different standpoints including ray tracing to mode 

determination and wave mechanics [Kautz 1988, Kiernan & Duke 1991, Duke 1993, Rose et al. 

1993]. The work on Acousto-ultrasonics is well reviewed by several authors [Vary 1988, Vary 

1991, Kautz 2002, Fahr 2014]. 

 

 

 
Figure 2-12. Typical configuration for the acousto-ultrasonic inspection of a plate. 
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2.6 Coda Waves and Diffuse Fields in Geophysics 

 Coda waves and their analysis originated in the Geophysics community where the term 

“coda” wave was coined by Aki [Aki 1969, Aki & Chouet 1975]. Aki borrowed the term from 

music, where a coda is the last portion of a piece of music, and used it to refer to the late arriving 

energy in seismograms. The goal of the early work involving coda waves was to examine the 

heterogeneities in the Earth’s crust by extracting parameters about the source and the propagation 

medium (e.g. attenuation and seismic moment). This early work has been reviewed by Herraiz & 

Espinosa (1987). 

 Work on coda waves progressed from extracting parameters from a single wave to 

comparative measurements in order to determine the time lapse properties of the crust. The first 

comparative measurement was used to determine the temporal variation of S wave velocities in 

the crust [Poupinet et al. 1984]. They developed the first algorithm to extract the relative velocity 

change between two coda waveforms. Since the original paper use earthquake doublets, the 

algorithm is often referred to as the Doublet Technique. A second name for the algorithm is the 

Cross-Spectral Moving-Window (CSMW) Technique since the algorithm utilizes the cross-

spectrum of multiple time windows. The algorithm was subsequently improved and extended to 

include attenuation measurements [Roberts et al. 1992]. 

 Nearly a decade later, an independent derivation of coda waves as multiply scattered waves 

yielded a temporal version of the CSMW Technique referred to as Coda Wave Interferometry 

(CWI) [Snieder et al. 2002]. Although CWI and CSMW are equivalent expressions in the time and 

frequency domains respectively, CWI has a stronger physics base and became the method of 

choice. CWI makes no assumptions as to the linearity of the relative velocity change with respect 

to time. However, if the relative velocity change is linear with time (as is the case for homogeneous 
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and thermal loads), then the CWI algorithm can be reduced to simple dilation of the second 

waveform until maximum correlation is achieved [Sens-Schöfelder & Wegler 2006]. Although 

this drastically simplifies the algorithm, the Stretching Technique becomes a grid search method 

that requires interpolation and thus is computationally expensive. A comparison of the 

CWI/CSMW and Stretching methods was presented by Hadziioannou et al. (2009) with the 

conclusion that the stretching method was more stable and less sensitive to noise. 

 Currently, the extraction of the coda wave relative velocity change has fallen out of favor 

in the Geophysics community [Weaver & Lobkis 2006]. The preference of many geophysics 

researchers now lies with the Green’s function extraction method developed by Lobkis & Weaver 

(2001) for NDE. This method allows for the passive (external source) reconstruction of the ballistic 

wave propagating between two receivers. Thus received coda waves can be transformed into 

traditional wave modes and traditional wave analyses (e.g. time of flight or amplitude reduction) 

apply. 

 

2.6.1 Contributions to Theory 

 The first analytical treatment of coda waves was presented by Aki (1969). In this work, 

Aki proposed that the coda waves consisted of singly scattered surface skimming waves. In a later 

publication, Aki compared his original single scatter model to a diffusion model and noted that 

neither extreme accurately described the observed coda [Aki & Chouet 1975]. The early work on 

seismic codas is reviewed by Herraiz & Espinosa (1987). Herraiz & Espinosa divide the evolution 

of the coda wave modeling efforts into four main groups: 

1. Transition from surface wave driven models to S wave driven models. Initiated in 1969. 

2. Abandoning the diffusion model. Initiated in 1977. 



www.manaraa.com

34 

 

 

 

3. Transition from single scattering dominated to multiple scattering dominated models. 

Initiated in 1977. 

4. Multiple scattering models with more realistic assumptions. Initiated in 1982. 

It is concluded in this review that none of the models presented adequately describe the physical 

mechanisms behind the formation of the coda wave. 

 Several decades later, Snider et al. introduced a new method for analyzing coda waves and 

extracting temporal variations by comparing two coda waves [Snieder et al. 2002]. They approach 

the coda wave from a multiple scattering perspective and examine the statistical perturbations of 

the positions of scatterers. Estimates of the perturbations are derived from the cross-correlation of 

the coda waves. For a homogeneous load, the average perturbation is linear with time and is 

equivalent to a relative velocity change in the material. A review of the theory and several 

experimental applications is given by Snieder (2006). 

 

2.6.2 Greens Function Extraction 

 Although originally derived for NDE, the method of recreating Green’s function from the 

cross correlation of received coda waves has seen much greater acceptance and application within 

the Geophysics community. The body of work concerning the extraction of Green’s function from 

the cross-correlation of coda waves is extensive and an early review is provided by Weaver & 

Lobkis (2006). Only a brief overview is presented here as Green’s function extraction is not the 

focus of this thesis. The first derivations and experimental demonstrations of Green’s function 

recreation are given by Weaver & Lobkis (20015, 2001, 2002). These early derivations were based 

on normal mode expansion for finite, lossless cavities, but other derivations were soon presented 

                                                 
5 See Lobkis & Weaver 2001 
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that did not require the assumption of a finite, lossless cavity. Four distinct derivations have been 

presented, demonstrating that the Green’s function is present in the correlation of coda waves: 1) 

derivation based on normal mode expansion [Lobkis & Weaver 2001], 2) derivation based on 

stationary phase [Snieder 2004], 3) derivation based on energy principles [Snieder et al. 2007], 

and 4) derivation based on ward identities [Weaver 2008]. 

 After the initial introduction of Green’s function extraction, proof of the applicability of 

this method to open, heterogeneous, scattering media was provided by many authors within a few 

years [Derode et al. (2003a, 2003b), Weaver & Lobkis 2004, Wapenaar et al. 2005, Snieder 2007, 

Weaver et al. 2009]. The early work has been reviewed by Weaver & Lobkis (2006) and Larose 

et al. (2006). Several authors noted that the resolution of the reconstructed Green’s function could 

be improved if the correlation of the Green’s functions is taken across an array of receivers [Stehly 

et al. 2008, Froment et al. 2011]. The resulting conclusions from this multitude of work are: 1) the 

ballistic waveform traveling between two points can be recreated from the correlation of the 

received coda waves generated from a tertiary source, 2) the recreation can be improved by 

ensemble averaging the results from multiple sources, 3) the results can be improved by spatially 

distributing the sources, and 3) the method theoretically works for any material and geometry for 

which coda waves exist. 

 

2.7 Applications of Coda Wave and Diffuse Fields to NDE 

 A significant amount of work has been done in applying the coda wave ideas from 

geophysics to NDT&E and in developing the diffuse field approach, both of which have been 

primarily applied to concrete and metals [Planes & Larose 2013, Lu 2007]. The result from this 
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body of work is that the sensitivity of coda waves to subtle changes in material condition and small 

scale, diffuse defects is widely accepted [Planes & Larose 2013]. 

 Subtle changes caused by loading, small scale damage, or environmental changes are 

detectable with coda waves from the extraction of differencing parameters [Lu 2007]. In a similar 

manner to the extraction of Stress Wave factors in the acousto-ultrasonic technique [Vary 1982, 

Vary 1991, ASTM 1997], useful information is obtained from a coda wave analysis by extracting 

differencing parameters between waveforms collected before and after a subtle change occurs. A 

differencing parameter is any characteristic of the waveforms (such as amplitude, energy, or 

velocity) that can be used to measure changes/differences between two or more waveforms. An 

ideal differencing parameter is zero for identical signals and benign changes (e.g. temperature 

variation) but is non-zero and monotonically increasing for damage and damage growth. Relative 

velocity is currently the most commonly used parameter [Planes & Larose 2013] and is usually 

determined from the Stretching Technique [Sens-Schonfelder & Wegler 2006, Larose & Hall 

2009, Hadziioannou et al. 2009, Liu et al. 2015], though the Cross-Spectral Moving Window 

[Poupinet et al. 1984, Roberts et al. 1992] and Coda Wave Interferometry [Snieder et al. 2002, 

Snieder 2006] methods have also been used. It should be noted that the coda wave relative velocity 

parameter is only defined for a pure waveform dilation, such as those caused by a homogeneous 

or thermal load [Snieder 2006, Weaver & Lobkis 2000]. The aforementioned methods actually 

measure the time dependent relative time lag (phase lag), which is equivalent to relative velocity 

only when the relative time lag increases linearly with time [Snieder 2006]. It should also be noted 

that the stretching technique assumes the linear relation is present [Sens-Schonfelder & Wegler 

2006], but damage is unlikely to present as a linearly increasing relative time lag and has never 
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been shown to do so. Therefore, using the relative velocity parameter to detect damage directly is 

an inappropriate application. 

 Michaels’ group first suggested the use of several differencing parameters, termed 

differential features, to help quantify the differences in coda waves caused by introducing damage 

[Michaels & Michaels 2005, Yu 2007]. These differential features examine the changes in the 

energy and structure of the waveforms as opposed to an overall dilation and thus are better suited 

to damage detection and characterization. Other common parameters used for damage detection 

include diffusion fitting [Anugonda et al. 2001, Deroo et al. 2010] and Green’s function symmetry 

[Lobkis & Weaver 2001, Weaver & Lobkis 2006, Sabra et al. 2008]. Experimental evidence and 

theoretical considerations suggest the differential features used by Michaels’ group provide a 

better measure of the differences in diffuse fields caused by damage/defects [Lu 2007] while 

relative velocity is a better measure of waveform dilation or average scatterer displacement 

[Weaver & Lobkis 2000, Snieder 2006], diffusion fitting may be best for material evaluation but 

still has defect characterization potential [Becker et al. 2003, Deroo et al. 2010, In et al. 2012, In 

et al. 2013], and Green’s function symmetry could assist in defect localization [Weaver & Lobkis 

2006, Sabra et al. 2008]. 

 

2.7.1 Contributions to Theory 

 As previously mentioned, the majority of work performed to date in the field of coda wave 

NDE has utilized the relative velocity differencing parameter. The theory describing the relative 

velocity differencing parameter was developed for the geophysics community and is discussed in 

the previous section. The contributions from the NDE community to the theory of coda waves lie 
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in modeling the coda wave field as a diffuse field and in modeling the multiple scattering and 

reflections that comprise coda waves as an acoustic energy diffusion process. 

 The first analytical treatment of coda waves as a diffuse wave field, including the 

portioning of acoustic energy among the wave modes, was presented by Egle [Egle 1981]. His 

analysis was based on the long period reverberations often encountered in room acoustics, and the 

main contribution from the work was the inclusion of shear wave modes that exist in solids but not 

in air. Weaver subsequently modified the analytical proof to include the energy portioning of the 

acoustic source [Weaver 1982]. Later, Weaver extended the diffuse field idea to plates using the 

normal modes of the plate and plate waves [Weaver 1984]. He concludes that his proof is not 

sufficient to describe the coda waves and that there are many cases where the work is unlikely to 

apply. 

 Initial support for the idea that the evolution of ultrasonic energy density can be described 

by a diffusion equation that has been modified to include temporal decay came from Guo et al. 

(1985), Weaver (1990), and Turner & Weaver (1995). These preliminary works were derived for 

polycrystalline metals and included several assumptions such as material homogeneity and 

scattering falling within the Rayleigh limit (ratio of scatterer size to wavelength is less than 0.5). 

The multiple scattering diffusion theory was then extended by Turner & Anugonda (2001) to 

include heterogeneous media. The 2D heterogeneous diffusion model was subsequently confirmed 

experimentally for a concrete sample [Anugonda, et al. 2001]. The heterogeneous diffusion model 

was later extended to finite and infinite 3D bodies with experimental confirmation [Deroo et al. 

2010]. They determined that the finite and infinite models fit the experimental data equally well, 

though significant measurement errors were encountered. 
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 Two parameters are extracted from fitting the diffusion equation to the received coda wave: 

the diffusivity, which corresponds to the length of the mean free path of a propagating wave, and 

the dissipation, which corresponds to the absorption of the acoustic energy. Both of these 

parameters can potentially be used to detect and characterize defects and material degradation, and 

thus are of interest for NDE. The current diffusion models have been developed for metals and 

concrete, which are isotropic, and are not applicable to fibrous composites, which are non-

isotropic. There is a potential to extend the diffusion models to fibrous composite materials, which 

could add useful information to a coda wave analysis. Indeed. the waveforms and log power 

spectra of coda waves collected from CFRP samples presented in subsequent chapters exhibit the 

same waveform envelopes and diffusion-type curves as shown by several of the afore mentioned 

papers [Turner & Anugonda 2001, Anugonda et al. 2001, Deroo et al. 2010]. 

 

2.7.2 Applications 

 The experimental work performed to date has been largely qualitative in manner where 

microstructural damage is introduced in an unquantifiable manner, such as ASR or stress corrosion 

cracking in concrete [Planes & Larose 2013, Shokouhi & Lorenz 2014]. Most studies merely detect 

a change in coda wave differencing parameters without correlating the changes to a specific change 

in the material or damage state. This is to be expected given the distributed nature of the damage 

of interest and the difficulty in quantifying the damage growth. The majority of quantitative work 

in detecting damage deals with measuring the relative velocity due to either thermal or 

homogeneous loading [Weaver & Lobkis 2000, Zhang et al. 2012, Larose & Hall 2009, 

Niederleithinger & Wunderlich 2013], though a few papers discuss quantifiable amounts of 

defects/damage [Seher et al. 2013, Michaels & Micheals 2005]. Some of the earlier work for coda 
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wave NDE has been reviewed by Planes & Larose with a focus on concrete applications [Planes 

& Larose 2013]. 

 As noted earlier, several approaches to detecting damage have been applied to concrete; 

most notably the diffusion fit parameters and the relative velocity change. Diffusion fitting 

provides three parameters by which damage can be detected/characterized and the material can be 

evaluated. The diffusion parameters have been used to characterize several cement specimens with 

various sizes and distributions [Becker et al. 2003], where qualitative trends and some ability to 

distinguish microstructure were observed. It was noted that better models are needed to analyze 

scatterer size and distribution. Self-healing concrete was monitored and evaluated in a similar 

qualitative manner [In et al. 2013]. The qualitative detection of micro damage (damage with a 

length scale on the order of or smaller than the largest aggregate) in concrete has also been explored 

with diffusion fitting [Deroo et al. 2010], where it was demonstrated that the diffusivity parameter 

is sensitive to damage density while the dissipation parameter remained constant. The quantitative 

applications of diffusion fitting to damage characterization in concrete to date have largely 

involved measuring the depth of surface breaking macro-cracks. Several publications have 

demonstrated that the time lag of the peak diffusive energy is well correlated to crack depth 

[Ramamoorthy et al. 2004, In et al. 2012, Quiviger et al. 2012, Seher et al. 2013]. Payan et al. 

(2013) were able to improve the characterization by applying dynamic loading to the specimen in 

the form of a low frequency shaker. The limitation with the macro-crack depth measurements is 

that the crack is surface penetrating and the transducers have to be on the opposite side of the 

crack. Several things become clear from these studies: 1) the diffusivity and dissipation parameters 

can partially but not fully characterize a cementious material, 2) micro damage is detectable with 

the diffusivity parameter with some potential for characterization, 3) surface breaking macro-
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cracks can be sized, and 4) the sensitivity to damage has not been established and it is unlikely that 

small amounts of damage (a few micro-cracks) can be detected in samples that are cubic meters in 

volume. 

 Relative velocity change is the most popular coda wave differencing parameter and can be 

used to directly measure thermal and structural loads, the acoustoelastic parameter, as well as 

micro-crack density [Planes & Larose 2013]. One of the first application of relative velocity 

measurements for NDE purposes correlated structural and thermal loading on Berea sandstone to 

the change in coda wave relative velocity [Gret et al. 2006]. Parallel and subsequent publications 

applied relative velocity extraction methods to concrete in order to measure thermal induced 

velocity variation [Larose et al. 2006, Niederleithinger & Wunderlich 2013, Zhang et al. 2013b]. 

These studies confirmed the linear phase shift with temperature for concrete materials that was 

previously demonstrated by Roberts et al. (1992) for acrylic plates and Weaver & Lobkis (2001) 

for aluminum billets. Several publications also examine the relative velocity variations due to 

structural loading [Larose & Hall 2009, Stahler & Sens-Schönfelder 2011, Zhang et (2011, 2012)], 

which confirmed the linear relation of the phase lag with time predicted by Snieder (2006). Zhang 

et al. (2013a) attempted to examine relative velocity variation due to the heterogeneous stress field 

generated by 4-point-bending on a concrete specimen, but the research yielded inconclusive 

results. The linear relation between applied homogeneous stress (or strain) and the coda wave 

relative velocity indicates the appropriateness of measuring the acoustoelastic parameter with coda 

waves. The acoustoelastic parameter, first derived by Hughes & Kelly (1953) based on 

Murnaghan’s theory [Murnaghan 1951], is the ratio of the relative velocity change to the change 

in applied strain. Payan et al. were able to use coda waves to measure the third order elastic 

constants from Murnaghan’s theory in addition to the acoustoelastic parameter in a concrete 
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specimen. Additionally, several authors have demonstrated the potential capability of the 

acoustoelastic parameter to detect micro damage and fatigue in concrete [Schurr 2010, Schur et al. 

2011a, Schurr et al. 2011b, Zhang et al. 2011]. Coda wave relative velocity has also been 

qualitatively used by several authors to directly estimate damage (typically stress induced micro-

cracking) [Masera et al. 2011, Neiderleithinger et al. 2010, Shokouhi & Neiderleithinger 2012, 

Shokouhi 2013, Shokoui & Lorenz 2014, Frojd & Ulriksen 2016]. Each of these studies 

demonstrated an increasing magnitude for the relative velocity change with increasing amounts of 

damage. While it is true that an increase in the number of micro-cracks should theoretically 

increase the mean travel time, this will only become apparent for large numbers of micro-cracks. 

 Improvements in detecting micro-cracks in cementious materials have been observed by 

several authors when a lower frequency pump wave is included [Toumi et al. 2011, Zhang et al. 

2013, Zhang 2013c, Hilloulin et al. 2014a, Hilloulin et al. 2014b, Moradi-Marani et al. 2014]. The 

lower frequency pump wave opens and closes the micro-cracks, which allows for greater 

interaction with the coda wave components. The nonlinear mixing between the pump and coda 

waves also allows for the improved measurements of the nonlinear parameters 

 Coda wave NDE is a volumetric method and as such no information regarding the location 

of the damage is extractable using the previously mentioned methods. In order to address this 

shortcoming, several authors have attempted to locate damage and applied stresses using 

theoretical spaciotemporal decorrelation kernals to predict the coda wave for an undamaged 

sample for a given transmitter-receive pair and solving the inverse problem [Planes et al. 2013, 

Niederleithinger et al. 2014]. Damage and point loads have been located to within several 

centimeters for large concrete samples. 
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 The two primary methods of analyzing differences in coda waves caused by damage or 

other subtle changes are based on time dependent phase lag or total waveform energy. While these 

differencing parameters are useful they only compare global coda wave parameters. An alternative 

method, first proposed by Michaels & Michaels (2005) for the analysis of coda waves, is to 

examine the parameters of the residual signal left over after a point-by-point subtraction of two 

coda waves (e.g. the signal energy contained in the residual). Michaels’ have utilized/developed 

at total of five such features (henceforth referred to as differential features) to characterize changes 

present in the coda wave due to the introduction of damage and variations in environmental 

conditions [Michaels & Michaels 2005, Michaels et al. 2005, Lu 2007, Michaels 2008]. These 

investigations demonstrated that the differential features are sensitive to damage and 

environmental effects in aluminum plates. They also demonstrated that the environmental effects 

can be separated from damage and that thermal changes can be compensated for. 

 

2.7.3 Technique Limitations and Barriers to Quantitative Work 

 Although the sensitivity of coda waves to small changes in material condition and small 

defects is accepted, it remains a challenge to interpret the changes in coda waves and correlate the 

changes to specific defects in a quantitative and reliable manner. Hindrances to quantitative work 

can be grouped into two main areas: 1) Increased sensitivity to benign changes and 2) The 

indeterminate nature of the coda wave field and the unquantifiable nature of the damage that has 

been of interest. 

 The increased sensitivity to subtle changes means that the differencing parameters are also 

sensitive to changes in the system between data collection, namely transducer misalignment and 

environmental factors such as temperature changes [Planes & Larose 2013, Snieder 2006, Weaver 
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& Lobkis 2006]. It is noted by multiple authors that one of the barriers to quantitative work is the 

masking of damage by thermal loads and other environmental effects [Michaels 2005, Larose et 

al. 2006, Lu 2007, Planes & Larose 2013, Zhang et al. 2013b]. To combat this, several authors 

have proposed mitigation methods including: keeping a constant ambient temperature, collecting 

baselines at various temperatures and selecting the baseline closest in temperature, and utilizing a 

secondary undamaged sample and subtracting the thermal shift in differencing parameters 

[Mazzeranghi & Vangi 1999, Lu & Michaels 2005, Lu 2007, Zhang et al. 2013]. Only the work 

by Michaels’ group has attempted to discriminate damage from environmental changes. As 

mentioned earlier the coda wave relative velocity is sensitive to waveform dilations caused by 

thermal loads and thus provide a good discriminator between damage and thermal effects 

[Michaels & Michaels 2005]. Permanently or semi-permanently attaching the transducers, as is 

the case with a SHM system, can also reduce the measurement error and improve the results. Note 

that the use of coda waves for SHM has been suggested and evaluated by Michaels’ group with 

favorable results [Lu 2007, Michaels 2008]. 

 

2.7.4 Summary 

 As can be seen from the review of literature on coda wave NDE, the majority of work was 

not concerned with developing a quantitative technique and introduced damage in an 

unquantifiable manner. This is to be expected given the distributed nature of the damage of interest 

in concrete. The majority of applications have also been focused on relative velocity 

measurements, either by themselves or to determine the acousto-elastic parameter, and lack good 

differential features to quantify changes in the waveforms themselves that are caused be damage. 
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There was also a lack of good models to explain the physics of damage detection with coda waves, 

which left researchers at a loss to explain anything more than homogeneous loads. 

 A significant number of publications exist in the field of coda wave NDE, yet the basic 

capabilities have not been addressed. Questions of measurement error, repeatability, accuracy, 

reproducibility, and sensitivity have not been tackled. The limitations on the size of the inspection 

volume, minimum detectable flaw size (and largest defect missed), and limiting SNR have not 

been considered. The shear components of the coda wave field have been almost completely 

ignored in experiments. Additionally, the formation, propagation, and any theory of coda waves 

for non-isotropic materials is severely lacking. 

 

2.8 Applications of Coda Waves and Diffuse Fields to NDE of Composites 

 Very few instances of coda wave NDE applied to fibrous composite materials exist in 

available literature. The first application, reported by Taylor et al. (2013), sought to compare a 

version of coda wave NDE with guided wave NDE to detect fatigue cracking near the root of a 

CX-100 wind turbine blade. This work calculates the receiver operating characteristics (ROC) for 

several transmitter-receiver pairs to compare the damage detection capabilities of the two methods, 

but several issues are present. The first and foremost is even though the paper seeks to utilize coda 

waves, the authors do not validate their estimate of the impulse response function. The second 

issue is that the researchers waited until a fatigue crack penetrated the surface of the blade to 

differentiate between the damaged and undamaged states.  

 The second application, reported by Tippman et al., measured the break in symmetry of 

the reconstructed Green’s function to detect engineered damage [Tippman & Lanza di Scalea 

2014, Tippman et al. 2015]. This work is largely qualitative though the second paper provides a 
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more quantitative analysis of the breaks in symmetry. Additionally, even though the recreation of 

Green’s function has been demonstrated by a multitude of papers [Lobkis & Weaver 2001, Derode 

et al. 2003, Sabra et al. 2005, Wapenaar et al. 2005, Sabra et al 2008], Tippman et al. (2014, 2015) 

do not validate their processing method extraction of Green’s function is not clear. In addition to 

the improved analysis presented by the second paper, where they sought to localize damage, but 

the process was not well explained and did not show promising results. 

 All in all, the applications of coda waves for the inspection of fibrous composite materials 

are scarce, mostly qualitative in nature, and not well validated. If coda wave NDE is to be a viable 

option for the inspection of fibrous composite materials, then significant quantitative work is 

required. 

 

2.9 Research Context 

 From the literature review on the use of coda waves (AKA diffuse fields) for the purposes 

of NDT&E, it is clear that coda wave NDT&E is in the nascent stage of development, lacks good 

quantitative applications for damage detection, and has seen limited applications to fibrous 

composite materials. Therefore, it is necessary provide a quantitative foundation for the continued 

utilization of coda waves for NDT&E, especially the NDT&E of fibrous composites. Since coda 

waves can be easily generated and there are a multitude of signal processing approaches, the major 

challenges exist in proving the sensitivity, accuracy, reliability, and repeatability of the signals and 

the damage indices as well as developing models (both analytical and numerical) that accurately 

describe and predict the behavior of the damage indices. 

 Several steps are required in order to provide the quantitative foundation required for 

successful coda wave NDT&E as briefly described in Figure 2-13. The first step analyses some of 
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the most basic properties and processing of the coda waves. This step involves five main tasks: a) 

Determine the effect of environmental changes (e.g. temperature change) on the coda wave and 

any damage indices, b) Develop and verify the processing algorithms, c) Determine the spreading 

function for coda wave acoustic energy, d) Develop definitions of attenuation and measure the 

attenuation of coda wave energy, and finally e) Determine the effect of boundaries on the 

development and propagation of coda waves. These tasks are absolutely necessary in order to 

develop a quantitative method. The propagation, attenuation, and boundary effect measurements 

help determine the maximum sensor spacing and the applicability to large structures. The 

measurement of environmental effects allows for the separation of benign effects from the effects 

of damage and thus will allow for improved detection and characterization. 

 The second step involves detecting simulated damage and analyzing the basic damage 

detection capabilities such as repeatability, sensitivity, and reproducibility. This step includes three 

main tasks: a) Detect defects such as drilled holes, b) Determine the detection capabilities, and c) 

Determine the behavior of the damage indices (DI) by developing a model that relates the value of 

the damage indices to a damage parameter such as volume. Using drilled holes for this stage of 

development is ideal since they are easy to fabricate and quantify as both the size (volume) and 

location are known. Once the basic detection capabilities are known and a model is developed for 

the DI, then damage size can be estimated based on the DI amplitude. This prediction capability 

is absolutely necessary for successful quantitative applications in the field. 

 The third step includes three main tasks: a) Detect realistic defects such as micro-cracking, 

damage caused by fastener holes, and barely visible impact damage, b) Monitor damage growth 

by means of fatigue and/or compression after impact, and c) Field testing. The realistic defects 
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listed are of particular interest to aerospace community, especially the barely visible impact 

damage, which is very common and difficult to detect. 

 The first two steps are addressed in this thesis while the third task is outside the scope of 

this work and is left to future research. The integration of all these experiments and analyses 

provides the quantitative foundation needed to transform coda wave NDT&E from an immature, 

qualitative idea into a mature, quantitative technique that is applicable for NDT&E/SHM of fibrous 

composites. 

 

 
Figure 2-13. Block diagram describing several of the necessary steps when transforming coda 

wave NDT&E from an immature and qualitative method to a mature, accepted quantitative 

NDT&E/SHM technique. (SNR = Signal to Noise Ratio, DI = Damage Index, BVID = Barely 

Visible Impact Damage, POD/ROC = Probability of Detection/Receiver Operating 

Characteristic) 
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CHAPTER 3. THEORY 

 

This chapter provides a presentation and discussion of several aspects of physical theories relating 

to the existence, production, and propagation of Coda waves (diffuse fields). Section 3.1 presents 

the work performed to date on coda wave propagation and discusses the impact of the work as well 

as the theories put forward. Work and theories relating to the temporal and spatial decay of coda 

waves is examined in Section 3.2. Finally, in Section 3.3, the theory behind several signal 

differencing parameters is presented and discussed. 

 

3.1 Coda Wave Propagation 

3.1.1 Propagation Models 

 Propagation models capable of explaining coda waves have been under investigation since 

the advent of coda waves in Seismology [Heraiz & Espinosa 1987]. For NDE applications, 

researchers have examined: guided wave propagation, bulk wave propagation, normal mode 

expansion models, and diffusion models. There is a clear transition from deterministic to 

indeterministic propagation models between pre and post 2000. In this section, the guided wave 

(deterministic) and diffusion (inderterminate) propagation models are examined. 

 It stands to reason that the first arrival is the ballistic arrival of a wave mode. Several 

researchers have been able to generate plate waves using single-sided, normal-incidence, pulse-

echo configurations [Moon et al. 1988, Kautz (1992, 1993), Zhenqing 2000]. Guo and Cawley 

(1993) also explore the possible relation between Lamb waves and coda waves, but without much 

analysis. Moon et al. (1988) were able to generate Lamb waves in a 3 mm thick CFRP laminate 

using a windowed toneburst, but the intent of their work was to generate Lamb waves, not analyze 
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coda waves. Because of this, they were able to demonstrate that Lamb waves can be generated in 

place of coda waves with a coda wave configuration. Kautz (1992, 1993) examined 2.2 mm thick 

samples of Ceramic Matrix Composites (CMC’s) and Metal Matrix Composites (MMC’s) using 

coda waves and found that the first arrivals corresponded to Lamb waves. Later Zhenqing (2000) 

used a toneburst to generate Lamb waves in 2 mm thick aluminum and 2.05 mm thick composite 

plates. 

 The above examples of Lamb wave generation all use thin plates (h ≤ 3 mm) were Lamb 

waves are more easily excided. Excitation of Lamb waves in plates of intermediate thickness (0.3 

≤ h ≥ 1.0 cm) using broadband pulses is much less likely, and excitation in thick plates (h ≥ 1.0 

cm) is very unlikely. Hsu and Margetan (1992), working in acousto-ultrasonics, examined the case 

of a thick (h = 2.5 cm) CFRP plate and found that the early portion of the coda wave consisted 

primarily of multiply reflected bulk waves while the first arriving portion was found to be a 

Rayleigh wave. It is clear from these various investigations that multiple waves modes exist in the 

coda wave and that in certain cases (either very thin or thick plates) some of the wave modes can 

be identified from the coda signal. In contrast to deconvolving wave modes approach to analyzing 

coda wave propagation, several authors have proposed multi-mode propagation approaches. 

Lobkis & Weaver (2001) proposed a normal mode wave field model, and although the model itself 

cannot be directly tested, it lead to the development of Green’s function extraction from coda 

waves. Snieder et al. (2002) expanded the normal mode wave field idea to include a random walk 

component for all wave modes as they scatter and reflect off of boundaries. Neither models by 

Lobkis & Weaver (2001) or by Snieder (2002) are able to predict the shape of the coda wave given 

material parameters. This limitation was addressed by Anugonda et al. (2001), who developed the 
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diffusion model to describe coda waves. This model treats the propagation of coda waves as an 

energy based diffusion process. 

 Preliminary investigation into possibility of coda waves consisting of Lamb waves was 

performed using an aluminum plate (~150x50x6 mm) described by Figure 4-1c and a 12.7 mm, 1 

MHz longitudinal receiver. The coda wave spectrum was segmented using Tukey windows with 

12% taper on either side, transformed back into the time domain, and the arrival time determined. 

The velocities for ballistic arrival for the various frequency thicknesses were then determined and 

compared to the dispersion curves as shown in Figure 3-1a. Several of the velocities correspond 

well with the dispersion curves, which indicates the possibility of low frequency anti-symmetric 

Lamb wave modes contributing to the formation of the coda. 

 Further investigation was performed using a pinducer receiver to eliminate any possible 

phase cancellation. Coda waves were received at five locations ranging from 5 to 10 cm by 1.25 

cm increments on both the top and bottom surfaces and were processed in the same manner as the 

previous signal. A comparison of the velocities for ballistic arrival for the various frequency 

thicknesses ae compared to the dispersion curves in Figure 3-1b. Lamb waves exhibit five 

properties that must be met before a wavelet can be considered a Lamb wave: 1) velocities must 

match the dispersion curves, 2) the same velocity must be observed on both the top and bottom of 

the plate, 3) the same displacement magnitude must be observed on both the top and bottom of the 

plate, 4) the wavelets received on the top and bottom must be either in phase or 90˚ out of phase, 

and 5) the same mode must be observed at each location on a given surface, but with increasing 

time delay with increasing travel distance. Figure 3-1b1 clearly shows that conditions 1 & 2 are 

not met. The inability to meet all five Lamb wave conditions indicates that the low frequency 

components of the collected coda waves are not Lamb wave modes. It should be noted, however, 
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that decoupling superimposed wave modes is possible if and only if the superimposed wave modes 

can be completely isolated (i.e. no overlap of the envelope) in either the time of frequency domains. 

The results discussed here are the attempted decoupling of the coda wave into constituent parts, 

and although multiple windows were attempted, it was not possible to completely decouple the 

modes. 

 

 

  
(a1) (b1) 

  

  
(a2) (b2) 

Figure 3-1. Decoupling coda wave components and comparing velocities to Lamb wave 

dispersion curves for a) 12.7 mm, 1 MHz longitudinal receiver and b) 2 mm pinducer. The 

dispersion curves for aluminum are shown in (1) while the spectra and windows are shown in 

(2). The signals were transmitted using a 12.7 mm, 1 MHz longitudinal transducer with a spike 

excitation. 
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 Given the difficulty inherent in the deterministic propagation approach, the indeterministic 

propagation models have gained popularity since the early 2000’s. Although the normal mode 

expansion and random walk models have their uses, the diffusion model can predict the envelope 

of the coda wave received at a given location. The diffusion of ultrasonic energy (E) is given by 

Anugonda et al. (2001) as: 
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where D is the ultrasonic diffusivity,  is the dissipation (decay rate), E0 is the initial energy 

deposited by the transmitter, r is the distance between transmitter and receiver, t is time, and  is 

a delta function. The solution to (3.1) is given as: 
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Taking the natural logarithm of (3.2) and multiplying by t gives: 
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which can now be used for least squares linear regression. C0 is a coefficient including E0 and D. 

 To examine the applicability of the diffusion equation, coda wave signals were collected 

from aluminum, polycarbonate, and quasi-isotropic plates described by Figure 4-1c using a 12.7 

mm 1 MHz longitudinal receiver. A second coda wave was collected from the aluminum sample 

using a pinducer receiver. In a similar manner to the calculation of the decay rate, the time domain 

signals are first equipartitioned using Tukey windows with 12% taper on either side. Next the 

power spectrum of each window is calculated and equipartitioned into frequency bins. The natural 
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logarithm of the total spectral power for a particular frequency bin is plotted against window center 

time and (3.3) is fit to the data using least squares. The results of this procedure are shown in 

Figure 3-2. All coda wave signals are moderately to well described by the diffusion envelope with 

the signal from the aluminum-pinducer combination exhibiting the best fit. Even the coda wave 

signal collected from polycarbonate is in good agreement with the diffusion envelope. 

 

 

  
(a1) (a2) 

  

  
(b1) (c1) 

Figure 3-2. Fitting the diffusion equation to coda waveforms collected from a) aluminum and b) 

polycarbonate plates using 1) a 12.7 mm 1 MHz longitudinal receiver and 2) a 2 mm pinducer. 

CFRP is included for reference (c), but the diffusion equation is for isotropic materials only. 
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This unequivocally demonstrates that the diffusion model is a much better model for the 

propagation of coda waves than trying to decouple individual wave modes. Note that the coda 

wave signal from the quasi-isotropic CFRP sample is well described by the diffusion equation 

even though it was derived for isotropic materials. 

 The diffusion equation does not perfectly describe the coda wave signals. There are clear 

differences between the coda wave signals received with the 12.7 mm longitudinal transducer and 

the 2 mm pinducer. These signals were collected from the same sample at the same transducer 

separation without decoupling the transmitter, and yet the coda waves are significantly different, 

and these differences cannot be attributed to coupling differences. This is an example of the effects 

of phase cancellation. 

 

3.2 Coda Wave Decay 

3.2.1 Attenuation 

 A general definition for attenuation is given as the reduction in amplitude of a traveling 

wave, which can be termed “apparent” attenuation [Auld 1973]. Figure 3-3 illustrates this 

definition. A better definition can be given as the combined loss of ultrasonic energy due to 

conversion into other energy forms and the scattering of ultrasound out of the transmitter-receiver 

path after accounting for geometrical spreading, dispersion, and imperfect reflections and 

transmissions [Papadakis 1979, Weaver 1987]. Scattering and absorption of ultrasonic energy are 

inherently distinct physical mechanisms that remove energy from a propagating wave, and hence 

can potentially be decoupled by examining the time dependent decay of the scatter field. 

 Traditional measures of attenuation typically fit an exponential decay to the propagating 

waveform at various transmitter-receiver separations or to the multiple echoes from the back wall  
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(a) (b) 

Figure 3-3. Illustrations of apparent attenuation of waves traveling in lossy media. a) General 

exponential decay of the wave amplitude. b) Apparent attenuation of multiple back wall echoes 

collected from a polycarbonate plate. 

 

 

(Figure 3-3) either with or without correcting for beam spread, dispersion, and reflection 

coefficients. Correction for geometrical spreading etc. cannot be calculated for coda wave 

attenuation as a coda wave is a superposition of numerous wave modes that have been multiply 

scattered and/or reflected and the path of each wave mode is unknown. Coda wave attenuation is 

therefore limited to determining the apparent attenuation, and several methods of measurement are 

used in this chapter. The simplest measure of attenuation is the exponential fit of the maximum 

received amplitude vs. transducer separation. This can be expressed with the following model 

where y is the separation dependent peak amplitude, x is the separation,  is a constant coefficient, 

and  is the constant valued attenuation coefficient. 

 
x

exy
 )(  (3.4) 

 A more complete picture of attenuation is given when the frequency dependent coefficient, 

(f), is calculated. This is typically done by taking sequential signal pulses (e.g. back wall echoes) 

and dividing in the frequency domain in order to deconvolve the information of the material path 
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from the system transfer function [Papadakis 1979, Schmerr & Song 2007]. The wavenumber (k) 

for a wave propagating in a lossy medium must be complex (eq. 3.5), where the real portion 

describes the propagation and the imaginary part describes the attenuation [Achenbach 1973]. The 

attenuation is then calculated by dividing the signal transfer functions as per eq. 3.6 and 3.7, where 

G and F are the signal pulses, F* is the complex conjugate of F, TR are the necessary 

transmission/reflection coefficients, r is the travel distance, W is the Weiner filter, and  is a 

stabilization constant. 
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Note that the purpose of dividing the signal transfer functions is to isolate the material transfer 

function and is only applicable when G contains the material transfer function in addition to the 

path transfer function contained in F. A complete description of this process for thick and thin 

plates is provided by Kinra & Dayal (1988). This method is included here for completeness but is 

not applicable to coda wave attenuation measurements. Unlike with the pulse-overlap method, the 

spectral magnitudes (or transfer functions) of coda wave signals collected at different transducer 

separations cannot be divided since the path information is different for each measurement and 

cannot be divided out (i.e. G does not contain the same path transfer function contained in F). In 

order to circumvent this difficulty and get a meaningful, frequency dependent attenuation 

coefficient, the signal spectra are calculated, partitioned into equal length windows, then inverse 
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Fourier transformed and the peak amplitude (y) determined. This is repeated for signals collected 

with different transducer separations. The peak amplitudes for each frequency window (with center 

frequency fC) are then plotted vs. transducer separation and an exponential decay is fit (as a 

function of transducer separation). Determining the exponential fits for each of the frequency 

windows yields the frequency dependent apparent attenuation as given by Eq. 3.8 & 3.9. 
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3.2.2 Decay Rate 

 The method for calculating the decay rate of coda wave signals was developed by Weaver 

(1987). The intention of this method is to disambiguate true and apparent attenuation by 

determining the absorption of ultrasound due to internal friction. While the scattering of ultrasonic 

energy away from the beam path will be affected by cracks, pores, and interfaces, the internal 

friction will be more sensitive to microstructural condition. It has been shown that the coda wave 

decay rate is sensitive to impact damage and fiber/matrix bond strength in SiC/SiC composites 

[Lott & Kunerth 1990] as well as fabrication parameters and treatments of SiC fiber/RBSN 

composites [Kautz 1993]. 

 The frequency dependent coda wave decay rate is determined by equipartitioning the time 

domain signal into equal length, non-overlapping time windows, calculating the power spectrum 

(PS) for each time window, equipartitioning the power spectrum into non-overlapping frequency 

bins, then fitting a decaying exponential to the natural log of the total power vs. time window plot  
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(a) (b) 

Figure 3-4. Steps in calculating the coda wave decay rate. (a) fitting the exponential decay and 

(b) the final frequency dependent decay rate. Signal was transmitted and received with 12.5 mm 

2.25 MHz longitudinal transducers excited by a spike pulse in aluminum 6061 plate. 

 

 

for each frequency bin (Figure 3-4). The decay rate is then half of the fitted slope with units of 

nepers per second. The accuracy of this method is several orders of magnitude higher than other 

methods of measuring pure attenuation [Weaver 1987]. 

 Consider two continuous time-domain signals, a baseline signal, x0(t), and a signal 

collected after a disturbance, x1(t), hereafter referred to as the measured signal, both of fixed length 

TL. The signals are sampled with a sampling period TS such that xi[n] corresponds to the sample at 

time t = nTS, with a total number of N points and n is the index. The discrete frequency 

representation (with index k) of the signal is then given by Eq. 3.10 and the spectral power by Eq. 

3.11, where M is the number of points in the time-domain window with index m, L is the number 

of points in the frequency-domain window with index l, and w is the window function. The 

frequency dependent decay rate, , is then given as Eq. 3.13. 
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3.3 Differencing Parameters 

 Differencing parameters are parameters that quantify the difference or similarity between 

two waveforms. Commonly used differencing parameters include Cross-correlation Coefficient 

(CC) and Mean Squared Error (MSE). 

 

3.3.1 Coda Wave Relative Velocity Extractions 

 Coda Wave Interferometry (CWI) was developed to detect small time-domain 

perturbations in the propagation medium that are normally undetectable using coherent waves by 

using a multiple scattering medium (scattering or reflections) as an interferometer [Snieder 2002]. 

The scattered waves repeatedly sample a region and accumulate small perturbations so that they 

become observable; this increases sensitivity when compared to coherent wave analysis [Zhang 

2013]. The later the coda wave arrives the more pronounced the small perturbations become. 

Figure 3-5 shows the difference in the sensitivity to a small velocity perturbation between the early 

and late arrival portions of the received wave. Typical CWI is concerned with determining the 

relative time lag t/t and the similarity between a baseline and post-perturbation waveforms. In  
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Figure 3-5. Ultrasonic waveforms collected from one-sided pit-catch UT on a 0.8 cm 

unidirectional CFRP plate subject to a 1.8 C temperature change. The two signals, h0 and h1, are 

collected before and after the temperature variation are the same in all three plots with a) the 

entire recorded signal, and windowed signals at b) early propagation time, and c) late 

propagation time. The signals are transmitted and received with 1.25 cm, 1 MHz longitudinal 

transducers. 

 

 

the case of constant, homogeneous velocity perturbations, the relative time lag is the negative of 

the relative velocity, v/v = -t/t. 

 Three signal processing methods are widely used in literature to estimate the relative 

velocity variation produced by comparing collected signals before and after thermal loading: 

Cross-Spectral Moving-Window (CSMW, also known as doublet) [Roberts et al. 1992], 

Windowed Correlation (CWI, also known as Coda Wave Interferometry) [Snieder 2002], and 

Stretching [Sens-Schönfelder & Larose 2008]. A study by Hadziioanou et al. (2009) demonstrated 

that for pure, linear dilations, Stretching provides more stable and accurate results, especially in 

the presence of noise. The Stretching method was selected for this study based on the results of 

Hadziianou et al. (2009) and the consideration that thermal loads produce almost pure dilation 

[Weaver & Lobkis 2000].  
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 Estimation of the coda wave relative velocity variation is dependent on the propagation 

velocity and path of the different wave modes present. Monitoring the propagation for each 

individual mode is quite difficult to do since each scattering event will produce mode conversion. 

The superposition of these modes can be treated statistically, however, and the relative velocity 

variations can be calculated based on the propagation of acoustic energy and the mode conversion 

rates as (3.14) for constant velocity perturbations in an isotropic medium with longitudinal velocity 

vl and shear velocity vS. For a Poisson medium, the relation reduces to (3.15) [Snieder 2006]. This 

indicates that the coda wave relative velocity can be determined by a change in moduli. 
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 Although the estimation of coda wave relative velocity is fairly straight forward in 

homogeneous and isotropic materials, for composite materials such as CFRP provide much more 

of a challenge. Wave modes in CFRP have different velocities in different directions and the 

thermally induced velocity change of each mode will also be different in all directions. This 

combined with the dispersive and attenuative nature of the material make analytical estimation of 

the relative velocity variation very difficult. It is likely, however, that the relative velocity change 

in the transverse direction will be larger than in the fiber direction due to dominance of matrix 

properties for transverse propagation and the increased sensitivity of the matrix moduli to thermal 

changes. 
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3.3.1.1 Stretching Technique 

 The Stretching method compares two time-domain signals, a baseline signal, x0(t), and a 

signal collected after a disturbance, x1(t), hereafter referred to as the measured signal. The 

measured signal is then dilated in time by dilation factor , giving x1(t(1-)) [Sens-Schönfelder & 

Wegler 2006]. The similarity between the baseline and the dilated, measured signals is determined 

by the normalized cross-correlation coefficient evaluated at zero lag (3.16). A grid search is then 

used to find the dilation factor that maximizes the similarity between the baseline and dilated, 

measured signals: CC(k) = Max(CC(i)). If the velocity perturbation is linear, as it is for a 

homogeneous thermal load, then the relative velocity is proportional to the dilation factor k: v/v= 

-k. The drawbacks of this technique are that it is computationally intensive since it involves a 

grid search and that its accuracy depends on the resolution of the dilation factor. 
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 Both continuous time-domain signals are sampled with a sampling period of TS such that 

xi[n] corresponds to the sample at time t = nTS. The total number of samples is given as N. If the 

signals have been sampled using Nyquist criteria, then the continuous signal can be completely 

reconstructed using ideal bandlimited reconstruction (3.17). 
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n s

s

T

nTt
sincnxtx  (3.17) 

A discreet signal can be perfectly reconstructed by evaluating (3.17) for specific time values giving 

ideal bandlimited interpolation (3.18). Since actual ultrasonic signals can be assumed to have zero 

amplitude for n < 0 and n > N, a summation over the number of points in the signal is sufficient. 
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Interpolation of the dilated signal is necessary in order to compare it to the baseline signal since 

the samples do not otherwise line up and any further processing would be meaningless. For a 

dilated, discreet signal in the time domain, the sampling period becomes TS(1+), therefore the 

interpolated signal is given by (3.19), where t(m) = t(n) for 
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 Recently, work has been presented attempting to improve the efficiency of the Stretching 

Technique by implementing a Taylor Series expansion [Liu et al. 2015]. The dilated continuous 

wave can be expressed as: 

       ttt   1xx 01  (3.20) 

where  is the dilation factor and (t) is distortion in the waveform. If the stretch parameter is 

much less than 1, which it is guaranteed to be for any coda wave analysis, and the distortion is 

minimal, then the dilated wave can be expressed using the Taylor Series expansion. 

         tOtttt  001 x̂xx  (3.21) 

The dilation factor can then be solved for a sampled signal (with sampling frequency fS) as follows: 
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 While this proposed improvement is significantly more computationally efficient in our 

opinion it has significant errors, especially for later window start times and larger dilation factors. 

Therefore, this new method is not used in this research. 

 

3.3.2 Coda Wave Differential Features 

 One strategy for the detection and characterization of damage in structures when individual 

wave modes cannot be identified is to quantify how ultrasonic signals change between 

measurements via differential features [Michaels 2008]. A differential signal feature is a 

differencing parameter between two signals. The change in signal amplitude due to the 

reflection/scattering from a flaw is an example of such a feature. An ideal differential feature is 

zero for identical signals and benign changes (e.g. temperature variation) but increases with 

increasing damage severity. The most useful features should be normalized to be independent of 

the original signal amplitude. In the following sections, a signal that is taken from a pristine sample 

(one without damage, defect, or introduced discontinuity) is referred to as a “baseline” signal while 

a signal taken from a damaged sample (one with damage, defect, or introduced discontinuity) is 

referred to as “measured” signal. 

 Five distinct time-domain and frequency-domain features [Michaels & Michaels 2005, Lu 

2007] are implemented for the quantitative comparison of baseline and measured signals for the 

detection of artificially damaged samples. They are: (1) residual temporal energy, (2) residual 

spectral energy, (3) loss of temporal coherence, (4) loss of correlation, and (5) differential curve 

length. These features are computed from time-domain signals. Consider two continuous time-

domain signals, a baseline signal, x0(t), and a signal collected after a disturbance, x1(t), hereafter 
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referred to as the measured signal, both of fixed length T. The signals are sampled with a sampling 

period TS such that hi[n] corresponds to the sample at time t = nTS with a total number of N samples. 

 

3.3.2.1 Temporal Energy of the Residual 

 Temporal residual energy (Etemp) is a modified version of simple baseline subtraction that 

measures how closely the shapes of the measured and baseline signals match. This feature was 

first proposed by Michaels & Michaels (2005). The measured signal is first scaled to unity energy 

(3.23), then the baseline signal is scaled by  to minimize the mean squared error between the two 

signals (3.24). The residual temporal energy is then the energy of the difference signal obtained 

by subtracting the scaled baseline signal from normalized measured signal over a specified time 

window from n1 to n2 (3.25). 

 𝑥1̃[𝑛] =  
𝑥1[𝑛]

√∑ 𝑥1
2[𝑛]𝑁−1

𝑛=0

 (3.23) 

 𝛾 =  
∑ 𝑥1̃[𝑛]𝑥0[𝑛]𝑁−1

𝑛=0

∑ 𝑥0
2[𝑛]𝑁−1

𝑛=0
 (3.24) 

 Etemp =  ∑ (𝑥ℎ1̃[𝑛] −  𝛾 ∗ 𝑥0[𝑛])
2N−1

n=0  (3.25) 

 

3.3.2.2 Spectral Energy of the Residual 

 Spectral residual energy (Espec) quantifies the changing structure of the ultrasonic signal 

caused by damage/defects by measuring the scattered energy. This differential feature was first 

proposed by Michaels & Michaels (2005). The spectrograms of both signals are computed from 

the short-time Fourier transform (STFT) (3.26), where w[n] is a Tukey window function of length 

M < N and k is the frequency index (0 ≤ k < M). Similar to the residual temporal energy, the 
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baseline signal is subtracted from the measured signal after normalizing the spectrograms to unity 

energy. The subtraction is performed for each time-frequency window (3.27). Integrating the 

square of the difference spectrum (D) over the frequency window yields the residual spectral 

energy (3.28). 

 𝑋𝑖[𝑛, 𝑝] =  ∑ 𝑥𝑖[𝑚]𝑤[𝑚 − 𝑛]𝑒−𝑗2𝜋𝑝𝑚/𝑀𝑀−1
𝑚=0  (3.26) 

 𝐷[𝑛, 𝑝] =  
|𝑋1[𝑛,𝑝]|

√∑ ∑ 𝑋1[𝑛̂,𝑝̂]𝑋1
∗[𝑛̂,𝑝]

𝑝2
𝑝̂= 𝑝1

𝑛2
𝑛̂= 𝑛1

−
|𝑋0[𝑛,𝑝]|

√∑ ∑ 𝑋0[𝑛̂,𝑝]𝑋1
∗[𝑛̂,𝑝̂]

𝑝2
𝑝̂= 𝑝1

𝑛2
𝑛̂= 𝑛1

  (3.27) 

 𝐸𝑠𝑝𝑒𝑐 =  ∑ ∑ 𝐷2[𝑛, 𝑝]𝑝2
𝑝=𝑝1

𝑛2
𝑛=𝑛1

 (3.28) 

 

3.3.2.3 Loss of Coherence 

 Loss of coherence (LoCoh), temporal, not spectral coherence, is a cross-correlation (R) 

(3.29) based measure of the time-dependent shape change between the baseline and measured 

signals. A differential feature based on this was proposed by Michaels & Michaels (2005). 

Normalizing the cross-correlation (3.30) makes this differential feature an amplitude-independent 

measure of damage. The peak coherence for each time window is the maximum correlation 

coefficient and the time delay is the delay corresponding to the maximum correlation. The loss of 

coherence is then computed by subtracting the mean peak coherence (one for each time window) 

from the maximum peak coherence (3.31). 

 𝑅01[𝜏, 𝑡] =  𝑥0[𝑡] ∙ 𝑥1
𝑇[𝑡 − 𝜏] (3.29) 

 𝑅̂01[𝜏, 𝑡] =  
𝑅01[𝜏,𝑡]

√R00[0,𝑡]R11[0,𝑡]
 (3.30) 

 𝐿𝑜𝐶𝑜ℎ =  max [max
𝜏

(𝑅̂01[𝜏, 𝑡])] − mean [max
𝜏

(𝑅̂01[𝜏, 𝑡])] (3.31) 



www.manaraa.com

68 

 

 

 

3.3.2.4 Loss of Correlation 

 The correlation of two signals is a measure of the overall match in waveform shape between 

the two signals and is a basic feature for ultrasonic damage detection [Zhang et al. 2004]. 

Therefore, the loss of correlation, as proposed by Michaels & Michaels (2005), measures the 

amount of temporal change between the baseline and measured signals. (3.32) gives the correlation 

between two signals expressed in terms of signal mean, , standard deviation, , and sampling 

period, t. The loss of correlation (LoCor) is then computed as (3.33). 

 𝑅01 =  
Δ𝑡

Σ0Σ1
{(𝑥0[𝑛] − Μ0) ∙ (𝑥1[𝑛] − Μ1)𝑇} (3.32) 

 𝐿𝑜𝐶𝑜𝑟 = 1 − 𝑅01 (3.33) 

 

3.3.2.5 Differential Curve Length 

 A signal’s curve length is related to the complexity of the signal, so the differential curve 

length measures the change in complexity of the difference signal (measured – baseline). This 

feature was first proposed by Lu (2007). The differential curve length (DCL) is given by: 

 𝐷𝐶𝐿 =  ∑ |(𝑥̃1[𝑛] − 𝑥̃0[𝑛]) − (𝑥̃1[𝑛 − 1] − 𝑥̃0 [𝑛 − 1])|𝑁−1
𝑛=0  (3.34) 

where 𝑥̃ again is the signal normalized to unity energy as per (3.23). 

 

3.3.3 Equating Signal Energy with Wave Energy 

 Determining the relationship between different physical quantities in systems where the 

exact physics is very complex or not fully understood, is possible by comparing the fundamental 

dimensions of each quantity. In the case of ultrasonic systems where the transducer is an electro-
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mechanical converter, input signal is a voltage, which passes to a piezoelectric material and is 

converted to a mechanical wave. The electrical fundamental unit for resistance and ampere, is not 

shared with mechanical quantities and can provide a barrier to determining a relationship between 

the two quantities. Nevertheless, the signal energy and wave mechanical energy can be related 

with the use of electrical impedance. Thus it is possible to relate electrical and mechanical 

quantities. A function predicting the behavior of differential signal features can be derived by 

analyzing the units of each feature. Such an analysis is fairly straight forward for the residual 

energies. 

 The temporal energy contained in the continuous signal x(t) is: 

 𝐸𝑇 = ∫ |𝑥(𝑡)|2𝑑𝑡.
∞

−∞
 (3.35) 

Here, the term energy is used in the generalized sense of signal processing with units of V2s 

[Norton & Karczub 2003, Oppenheim & Schafer 1975]. The equivalency of temporal and spectral 

energy for discrete signals is given as: 

 𝐸𝑡 = ∑ (|𝑥[𝑛]|2∆𝑡)𝑁
𝑛=0 = 1

𝑁
∑ (|𝑋[𝑛]|2∆𝑓) = 𝑁

𝑛=0 𝐸𝑆 (3.36) 

following Parseval’s theorem, where x[n] is the discrete time-domain signal and X[n] is the 

discrete frequency-domain signal. Thus, residual temporal and spectral energy have the same units. 

The equivalency requirement between temporal and spectral energy from Parseval’s theorem does 

not hold for residual energies since they are calculated differently. Signal energy is related to the 

acoustic wave energy through Ohm’s law by dividing the signal energy by the electrical impedance 

as shown in (3.37) [Oppenheim & Schafer 1975]. 

 𝑉2𝑠

Ω
 =  (𝑘𝑔∗𝑚2

𝐴∗𝑠3 )
2

𝑠 ∗ ( 𝐴2∗𝑠3

𝑘𝑔∗𝑚2) = (𝑘𝑔∗𝑚2

𝑠2 ) = 𝐽 (3.37) 
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The acoustic wave energy density is given as: 

 𝐸𝑤 = 1

2𝑚
𝜌 ∑ 𝑐𝑖

2𝑚
𝑖=1  (3.38) 

where  is the material density, ci is the velocity of the ith wave mode, m is the number of wave 

modes, and the units are J/m3 [Achenbach 1976]. A volume is needed to convert the units of 

acoustic wave energy density into Joules. 

 Based on the units of residual energy, the function describing the behavior of the residual 

energy differential features takes the following form: 

 𝐸𝑟𝑒𝑠 =  𝜉 ∗ 𝜌 ∗ 𝑐𝑖
2 ∗ 𝐷2 ∗ ℎ ∗ Ω (3.39) 

where  is a scaling factor, ci is the wave velocity of one of the modes, d is the hole diameter, h is 

the hole depth, and  is the system electrical impedance. 

 Determining the function for the other three features based on unit analysis is more 

difficult. Loss of coherence and differential curve length are unitless quantities while loss of 

correlation has units of time. This suggests that a function based on material properties cannot be 

derived without a way to cancel out the units of ampere from the electrical impedance. It is very 

likely that these features have no physical significance. 
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CHAPTER 4. EXPERIMENTS 

 

 This chapter provides an overview of the materials and equipment used in the experiments 

presented in this thesis. Section 4.1 describes the materials and samples examined in subsequent 

experiments. The experimental system, equipment, and data collection are detailed in Section 3.2. 

Measurement errors are discussed in Section 4.3. Finally, several characteristics of the 

experimental system are analyzed in Section 4.4. This includes the transducer transfer function, 

system signal-to-noise ratio, and wave form properties. 

 

4.1 Samples 

 Measurements were made on five materials throughout this thesis: 6061 aluminum, 

polycarbonate, acrylic, uni-directional and quasi-isotropic carbon-fiber reinforced polymer as 

detailed in Table 4-1. Torayca 3900-series highly toughened carbon fiber-reinforced epoxy 

prepreg (Toray P235W-19) was chosen for the carbon-fiber material since it is the material that is 

used for the Boeing 787. Material was donated to Iowa State University by Boeing Corporation. 

The size scales for a typical CFRP laminate are shown in Figure 2-1. 

 Coda waves can form in nearly any material and geometry. Consider three extreme 

scattering cases: polycarbonate, aluminum, and CFRP. In a pristine sample of polycarbonate, the 

formation of the coda wave is due solely to the boundary scattering and waves propagate with little 

visco-elastic absorption. When a defect is introduced, both boundary and defect scattering cause 

the coda wave. In a damaged aluminum sample, grain, boundary, and defect scattering are 

superimposed to form the waves, which propagate without visco-elastic absorption. Coda waves 

in CFRP are significantly more complex: along with ply, fiber, boundary, and defect scattering,  
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Table 4-1. Material properties. 

  
Density 

(g/cm3) 

Young’s 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Longitudinal 

Velocity 

(m/s) 

Shear 

Velocity 

(m/s) 

Aluminium 6061  2.71 68.91 261 0.331 6300 3150 

Polycarbonate  1.22 2.352 0.852 0.382 2400 1070 

Acrylic  1.191 3.101 1.151 0.351 2040 980 

CFRP (unidirectional) 

            Toray P2353W-19 

In-plane 
1.63 

154,12.8 5.96,3.27  100303,29003 19303,14303 

Transverse 12.8 5.96,3.27  29003, 29003 19303,14303 

CFRP (quasi-isotropic) 

            Toray P2353W-19 

In-plane 
1.63 

62.1 24.4, 9.0 0.27, 0.15 69403, 64003 39003, 23703 

Transverse 12.8 9.0, 9.0 0.15, 0.15 29003, 29003 23703, 23703 
1 asm.matweb.com 
2 PD5103_AR1 0915 www.aetnaplastics.com 
3 measured or calculated 

 

Table 4-2. Summary of specimens and introduced damage. 

Specimen 

Number 

Specimen 

Description 
Material 

Damage/Loading 

 Description 

Damage Location 

Hole Number Coordinates (mm) 

1 

304.8 x  

304.8 x  

8.5 mm 

CFRP-uni 

CFRP-quasi 

Acrylic 

Thermal loading 

Heated to 30˚, cooled slowly 
-- -- 

2 

152.4 x  

50.8 x  

6.35 mm 

Aluminium 6061 

CFRP-quasi 

Polycarbonate 

Single through-hole 

0.397 – 7.94 mm 

Drilled full through 

Stepped by 0.397mm 

-- (25.4, 12.7) 

3 

152.4 x  

50.8 x  

6.35 mm 

CFRP-quasi 

Polycarbonate 

Single through-hole 

1.59 – 6.35 mm 

Drilled halfway, then through 

Stepped by 0.397mm 

-- (0, 0) 

4 

152.4 x  

50.8 x  

6.35 mm 

CFRP-quasi 

Polycarbonate 

Multiple through-holes 

0.397 mm diameter 

Drilled full through 

1-5 holes by 1 

1 (10, 0) 

2 (-10, 0) 

3 (0, 10) 

4 (0, -10) 

5 (-4, 7.5) 

      

 

 

visco-elastic absorption is prominent. Moreover, the orthogonal waves have distinct velocities that 

vary depending on propagation direction with respect to fiber direction. 
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 A summary of the specimens discussed in this thesis is presented in Table 4-2. A plate size 

of 304.8 x 304.8 mm was chosen for specimen #1 as it is the largest plate that can be fabricated 

with available resources. The size and thickness of the aluminum sample described by specimen 

#2 was chosen to closely match the sample used in previous publications for comparison purposes 

[Michaels & Michaels 2005, Lu & Michaels 2005, Lu 2007, Michaels 2008]. The sizes and 

thicknesses of the CFRP and polycarbonate samples described by specimen #2, 3, and 4 were 

selected to match the aforementioned aluminum sample and thus account for sample geometry 

when comparing damage detection in different materials. 

 

4.1.1 Samples Used for Wave Propagation 

 Measurements were made on several samples: 30x30x0.8 cm plates of Plexiglas 

(isotropic), unidirectional CFRP (transversely isotropic, and quasi-isotropic CFRP; 

15.24x5.08x0.64 cm plates of aluminum 6061, polycarbonate, and quasi-isotropic CFRP. The 

acrylic samples, although simple in terms of material and geometry, are of interest because there 

is little to no internal scattering and minimal attenuation due to absorption. Therefore, the 

development of coda waves will be due to reflections from the boundaries. By contrast, the CFRP 

plate is complex in terms of material with simple geometry: Development of coda waves will be 

due to multiple, strong scattering from the fiber-matrix interface and the multiple plies in addition 

to the boundary reflections. The CFRP plate also exhibits high attenuation due to absorption, 

dispersive effects, and bulk wave velocities that vary with direction. The sample geometries, 

transducer locations and measurement locations are shown in Figure 4-1. 
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(a) (b) 
  

 
(c) 

Figure 4-1. Illustrations of the unidirectional CFRP plate showing the sample dimensions and 

the transducer placement locations with a) a schematic of the sample and data collection points 

for the coda wave propagation in CFRP, b) a schematic of the sample and data collection points 

for the boundary effects in CFRP, and c) small plate configuration for finite vs. semi-infinite 

boundary measurements. 

 

4.1.2 Samples Used for Drilled Hole Detection 

 Measurements were made on three materials: 6061 aluminum, polycarbonate, and carbon-

fiber reinforced polymer as illustrated in Figure 4-2 and detailed in Table 4-2. Although these 

specimens are simple in geometry, each offers distinct wave scattering and propagation 

characteristics. Aluminum is isotropic with grain scattering, polycarbonate is isotropic with no 

internal scattering, and CFRP is quasi-isotropic with ply and fiber scattering as well as visco-

elastic absorption. 
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 Damage was introduced either by drilling a single through-thickness hole of increasing size 

(specimen #1 & #2) or by drilling multiple through-thickness holes of uniform size (specimen #3). 

For specimen #1, the damage was introduced as a single 0.397 mm (1/64”) diameter through-

thickness hole. The hole diameter was then gradually increased to 7.94 mm (5/8”) by increments 

of 0.397 mm (1/64”). The damage for specimen #2 was introduced by drilling halfway through the 

plate then completely through, as illustrated in Figure 4-3. Hole diameter ranged from 1.59 mm 

(4/64”) to 4.37 mm (11/64”) by steps of 0.397 mm (1/64”)..In specimen #3, the damage consists 

of five 0.397 mm (1/64”) diameter through-thickness holes. Ultrasonic signals were recorded after 

each subsequent hole or enlargement of the hole. The ambient temperature of the lab was taken 

for each signal collection. The temperature remained steady at 21.1 ˚C ± 0.1. Table 4-2 summarizes 

the three specimens and introduced damage. 

 

4.1.3 Samples Used for Determining Thermal Effects 

 Measurements were made on two samples; a 30x30x0.9 cm Plexiglas plate (isotropic) and 

a 30x31.8x0.9 cm unidirectional CFRP plate (transversely isotropic) with the material properties 

summarized in (Table 4-1). The Plexiglas plate, although simple in terms of material and geometry, 

is of interest because there is little to no internal scattering and minimal attenuation due to 

absorption. Therefore, the development of coda waves will be due to reflections from the 

boundaries. By contrast, the CFRP plate is complex in terms of material with simple geometry: 

Development of coda waves will be due to multiple, strong Rayleigh scattering from the fiber-

matrix interface in addition to the boundary reflections. The CFRP plate also  
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(a) (b) 

  

 
(c) 

Figure 4-2. Illustration of the samples (thickness of 6.35mm) with damage and transducer 

placement. (a) Specimen #1, rectangular plate with single through-hole of increasing diameter. 

(b) Specimen #2, rectangular plate with single through-hole of increasing diameter and depth. (c) 

specimen #3, rectangular plate with multiple through-holes of constant diameter clustered around 

the plate center. 

 

 

 

Figure 4-3. Illustration of introducing damage in specimen #2. 
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(a) (b) 

Figure 4-4. Illustrations of the unidirectional CFRP plate showing the sample dimensions and 

the transducer placement locations. 

exhibits high attenuation due to absorption, dispersive effects, and bulk wave velocities that vary 

with direction. 

 

 

 The specimens were subjected to thermal variations by heating them to 30 ± 2.1 ˚C and 

allowing them to cool freely in an insulated enclosure (to slow down the specimen cooling rate) 

while monitoring the temperature with an Omega HH12 type-K thermocouple. Allowing the plate 

to cool down slowly in an enclosure helps to eliminate heterogeneous temperature zones and hence 

heterogeneous velocity variations by ensuring a consistent temperature throughout the plate. Coda 

wave signals were collected during the cool down of the specimens starting at 24 ± 2.1 ˚C and 

continuing until room temperature was reached, which was 20.0 ± 2.1 ˚C. During processing, 

21.0˚C is considered to be room temperature so that both positive and negative waveform dilatation 

can be examined. Two separate thermal couples were used to verify the variations in temperature, 

they varied by less than 0.1 ˚C. 
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4.2 Experimental Configuration 

 A conventional Panametrics 5052 PR ultrasonic pulser-receiver was used for a 300V spike 

excitation as well as reception and signal amplification. Primary amplification of the signals came 

from a Panametrics 40 dB constant gain ultrasonic preamp. A LeCroy HDO 4022 12-bit digital 

oscilloscope (Teledyne LeCroy Corp., Chestnut Ridge, NY, USA) digitized the signals with a 50 

MHz sampling frequency. Each recorded signal was averaged 200 times to increase the signal to 

noise ratio. Figure 4-5 shows a schematic of the ultrasonic system configuration. The pulser-

receiver damping settings were varied and a 6 dB attenuation was applied to the excitation signal 

from a RITEC RA-30 high power attenuator (RITEC Inc., Warwick, RI, USA) in order to test the 

linearity of the system and the coda wave parameters. 

 Several piezoelectric transducers are used throughout this thesis and are described in Table 

4-3. The Panametrics transducers were selected for their sensitivity for the higher frequency 

spectral energy in the coda waves (Figure 5-3). While the majority of energy in the coda wave lies 

below the bandwidth of these transducers precision measurements can still be made since the 

measurements are comparative by nature and the configuration is not changed between subsequent 

measurements.6 The pinducer will encompass more than 90% of the spectral energy, but suffers a 

large reduction in power (power is r2 dependent) and are notoriously noisy.7 The transducers are 

either coupled temporarily using honey or semi-permanently using Crystalbond 555 (a water 

soluble wax with a flow point of 66˚C). The transmitting transducer is semi-permanently attached 

in all experiments while the receiver is semi-permanently attached during damage detection. Semi-

permanently coupling the transducer minimizes changes in coupling, but the changes in coupling 

with time or degradation of the coulpling with Crystalbond 555 has not been addressed. The effect 

                                                 
6 Private communications, Frank Margetan, Dan Barnard, Jennifer Michaels, July 2015-May 2016. 
7 Private communications, Frank Margetan, Ron Roberts September 2015. 
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of decoupling and recoupling the transducers on the coda wave repeatability is discussed in 

Chapter 5.  

 All the waveforms in this work are collected over 0-2000 s and are digitized with 50 MHz 

sampling frequency. This window length is sufficient to capture all of the waveform energy since 

increasing the collection time increases the signal energy by less than 1E-3%. It should be noted 

that this collection time is long enough for a longitudinal wave in aluminum to travel more than 

12 m (13 m for CFRP and 4 m for polycarbonate). Since prior literature often used lower bit-depths 

(8bit) and sampling frequencies (2—15 MHz), both the bit-depth and the sampling frequency were 

reduced during post-processing to determine if there were any significant differences in the results. 

Though this modification does affect the accuracy of the amplitude (peak amplitude/2^bit depth) 

and time measurements (0.5/sampling frequency), it does not affect the coda wave parameters 

discussed in subsequent chapters. 

 Figure 4-6 through Figure 4-8 shows typical baseline and damage signals from each of the 

three specimens. Although the signals are significantly different for the different materials, a visual 

comparison of the baseline and damage signals yields only subtle differences. No obvious temporal 

or spectral signal differences are present between the baseline and the 0.4 mm damage signals by 

which damage is detectable or characterizable. Significant differences are observable, however, 

between the baseline signal and the 6.4 mm signals. 
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Figure 4-5. Experimental Configuration for one-sided pitch-catch ultrasonic transmission. 

 

 

Table 4-3. Ultrasonic receiver characteristics as provided by manufacturer. 

Manufacturer Part # Wave Type 
Diameter 

(mm) 

Center Freq 

(MHz) 

-6dB 

Bandwidth 

(MHz) 

Panametrics V103 L 12.7 1.02 0.5-1.51 

Panametrics V153 S 12.7 1.02 0.5-1.52 

Panametrics V106 L 12.7 2.252 0.5-2.751 

Digital Wave 

Corp. 
B1025 L 6.25 1.02 0.05-2.02 

Valpey-

Fischer 
-- L 2.0 5.02 0.001-10.02 

L = longitudinal 

S = shear 

 



www.manaraa.com

 

 

 

 

8
1
 

 
(1) 

 

 
(2) 

Figure 4-6. Representative waveforms (1) and spectra (2) collected from aluminum with various size drilled through-holes. The 

signals are transmitted and received with a pair of 12.7 mm 2.25 MHz longitudinal transducers excited with a spike pulse. 
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(1) 

 

 
(2) 

Figure 4-7. Representative waveforms (1) and spectra (2) collected from quasi-isotropic CFRP with various size drilled through-

holes. The signals are transmitted and received with a pair of 12.7 mm 1.0 MHz longitudinal transducers excited with a spike pulse. 
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(1) 

 

 
(2) 

Figure 4-8. Representative waveforms (1) and spectra (2) collected from polycarbonate with various size drilled through-holes. The 

signals are transmitted and received with a pair of 12.7 mm 1.0 MHz longitudinal transducers excited with a spike pulse. 
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4.3 Error Analysis 

 A standard error analysis is not possible to perform with coda wave measurements. The 

coda wave consists of many superimposed wave modes, each with a different 

propagation/scattering path, which is very difficult to trace. It has been shown that the dominant 

errors in coda wave analysis stem from transducer placement errors, coupling inconsistencies, 

system noise, and environmental changes [Mazzeranghi & Vangi 1999, Gyekenyesi et al. 2002, 

Snieder 2006, Lu 2007, Zhang et al. 2013b]. Errors from transducer placement and coupling are 

eliminated by semi-permanently attaching the transducers for a given experiment. Errors from 

environmental changes are minimized by collecting data over a short period of time while room 

temperature and humidity remain steady. 

 

4.3.1 Measurement Uncertainty 

 One method of error analysis is to examine the standard deviation of repeated 

measurements [Topping 1979, JCGM 2010], but this is a measure of precision, not accuracy. 

Measurement uncertainty is comprised of accuracy error and precision error. The accuracy error 

is the difference between the measure value and the true value caused by systematic errors such as 

calibration offsets and repeatable measurement biases while the precision error is the variation in 

repeated measurements caused by random processes. Figure 4-9 illustrates the measurement 

uncertainty for a distribution of repeated measurements where the accuracy error appears as an 

offset and the precision error appears as the standard deviation. 

 Difference measurements are computed by subtracting a baseline from a measured quantity 

when both the baseline and measurement are measured with the same experimental configuration. 

This type of measurement yields a relative quantity (e.g. change in temperature)  
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Figure 4-9. Measurement uncertainty for repeated measurements. 

 

 

and is often more accurate than single measurements because the systematic errors are eliminated 

by the subtraction. The only error left is the random measurement error caused by system noise, 

EMF fluctuations, or other non-systematic error sources. These errors are observable in the 

standard deviation of repeated comparative measurements. 

 

4.3.2 Experimental and Signal Processing Errors 

 A/D conversion was performed with a 12-bit system with a maximum recorded peak-to-

peak amplitude of 1.6 V. Thus the uncertainty in the amplitude measurement is 4.69E
-2 mV. 

Likewise, the uncertainty in the time measurement can be determined from t = 1/2*Fs, where Fs 

is the sampling frequency. For this study, the sampling frequency was 50 MHz, giving a time 

uncertainty of 10 ns. 

 The errors involved with calculating the attenuation come from errors in the measurement 

of amplitude, time, and transducer location, errors in the FFT algorithm, and errors in the Least 

Squares (LS) process. Since the amplitude, time, and location errors are the same for each data 
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point, they do not affect the results of the weighted LS process. The FFT algorithm has an 

associated root mean squared error of O(f (logN)0.5), where f is the floating point relative accuracy 

and N is the number of data points. This gives a maximum value of 4.477E
-15 for this work, and is 

thus negligible. Weighted LS gives standard errors in the calculated slope of the linear fit [Hughes 

& Hase 2010], namely: 
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 (4.9) 

Where xLS is the independent variable and wLS is the weight applied to each data point. The weight 

is set to the inverse square of the uncertainty of each data point. 

 The errors in the coda wave decay rate calculations are similar to those for the attenuation 

calculations with the addition of an uncertainty in the calculation of the power spectrum. The 

uncertainty of the power spectrum is given by [Weaver 1987]: 

    FTPwFTPa iTiLSiTi 
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




22/1  (4.10) 

Where PT is the value of the total power, T is the width of the time window, and F is the width 

of the frequency window. The inverse square of the power spectrum uncertainty is used as the 

weights for the LS regression. The decay rate errors reported are approximately eight times larger 

than those reported by Weaver due to the fact that the length of our time domain signal is 

approximately one eighth Weaver’s. 

 Errors reported for the waveform parameters, attenuations, and damage indices are taken 

as three standard deviations of the repeated measurements, which will encompass 99% of the 

measurements. The errors are propagated according to standard practices [Hughes & Hase 2010, 

Topping 1972]. 
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 The temperature measurement error is a combination of the sensor error and the 

thermocouple error, where sensor = 0.3% of measurement + 1˚C and therm = max(0.4% of 

measurement, 1.1˚C) [www.omega.com]. Since the error of the thermal couple wire is a calibration 

constant, it is only necessary when determining absolute temperature. When considering relative 

temperature measurements, the wire calibration does not affect the measurement and the 

measurement error is due solely to the sensor error. This was confirmed experimentally by using 

two separate thermocouple wires simultaneously with the same sensor. When measuring 

temperature differences (as we are in this study) the cold junction compensation (CJC) error, which 

normally dominates the sensor error, becomes insignificant as long as the sensor itself is held at 

near constant temperature. The error in consecutive temperature measurements is therefore given 

as temp = 0.3% of measurement. 

 

4.4 System Characterization 

4.4.1 Transducers 

 Signals were collected in pulse-echo mode on a sample of fused silica in order to determine 

the transducer transfer functions for the 12.7 mm 1 MHz and 2.25 MHz longitudinal transducers. 

The 6.4 mm AE receiver and 2 mm pinducer were not evaluated due to their inability to be used 

with a high voltage pulse-echo configuration, low transmission power, and their limited use in this 

work. The transducer functions were isolated by correcting for beam spread, attenuation, and 

transfer losses via deconvolution in the frequency domain using the propagation models and 

Weiner filter described by Schmerr & Song (2007). Figure 4-10a shows the measured, frequency 

dependent transducer functions for a PR damping setting of 0. The -6 dB bandwidth determined 

from the figure is listed in Table 4-3. Several pulse-echo signals were subsequently collected at 
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different PR damping settings (0, 3, 6, 9) to examine its effect on the transducer functions, and the 

results are shown in Figure 4-10b. An increase in damping (decreasing the electrical impedance) 

decreases the spectral amplitude up to several orders of magnitude and increased the peak 

frequency by several tens of kHz. It should be noted that the decrease in spectral amplitude of the 

transducer functions illustrates the reduction of signal energy, but not reduced sensitivity of the 

transducers as the first derivative of the transducer functions (when normalized to unity) vary by 

less than 5%. Also note that the transducer function will change when coupled to different 

materials8 [Adams 2007]. This effect has not been well characterized in literature and is not 

analyzed here, but this effect does not significantly modify the transducer transfer function. 

 

 

  
(a) (b) 

Figure 4-10. Transducer characteristics. (a) comparison of 1 MHz and 2.25 MHz longitudinal 

transducers and (b) effect of increasing the pulser-receiver damping setting. All results are 

normalized to the peak amplitude at a PR damping setting of 0. 

 

 

                                                 
8 Private communications, Frank Margetan, Dan Barnard, Jennifer Michaels, July 2015-May 2016 
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4.4.2 Signal-to-Noise Ratio 

 The ratio of the signal amplitude to noise (signal-to-noise ratio, SNR) is an important factor 

that determines if a signal component can be distinguished from the background noise. A good 

definition for noise is any undesired signal components that obscure the signal components of 

interest. From this noise definition, it is fair to say that SNR is a good measure of the detectability 

of a flaw for traditional ballistic wave inspection [NDT Resource Center 2014]. In the cases where 

this statement holds, the goal is to distinguish a specific signal feature from all extraneous signal 

features. Thus the extraneous features are referred to as “noise.” Often, the signal features 

corresponding to scattering and reflections are undesirable and referred to as noise [Chiou et al. 

1995, Howard et al. 1995]. Examples of unwanted signal features that are usually referred to as 

noise are illustrated in Figure 4-11 and Figure 4-12. Multiple reflections from a typical pulse-echo 

of a pristine plate are shown in Figure 4-11. The first, second, and third back wall reflections are 

easily distinguishable as desirable signal. On the other hand, the low amplitude signal in between 

these reflections is undesirable since it is not directly related to the back wall reflection, and hence 

is commonly referred to as noise (e.g. back-scatter noise). The amplitude of the forth back wall 

reflection is so low that it is nearly indistinguishable from the noise. 

 There are nearly as many quantitative ways to define signal to noise ratio as there are 

applications that are interested in it [Howard et al. 1995]. A rule of thumb for ultrasonic inspection 

based on the ratio of the flaw signal amplitude to the background amplitude is that 3 dB > SNR 

>40 dB is required [NDT Resource Center 2014]. The subtle changes in coda waves due to small 

scale damage is are not separable from the coda wave, and hence the preceding SNR rule of thumb 

is not necessarily applicable. A proper definition of SNR depends on the definition of noise and 

how the data is processed. Coda wave NDE utilizes the multiply scattered signal that was 
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traditionally referred to as noise, therefore, the only noise left in the signal is due to the equipment, 

cabling, and transducers. 

 The theoretical SNR limit for any analog to digital converter (ADC) is the ratio of a single 

bin to half the total number of bins (the number of bins = 2number of bits). Thus, the maximum 

theoretical SNR for an 8 and 12 bit ADC is 42 and 66 dB respectively. This theoretical limit can 

be easily surpassed by adding dither, drastically oversampling (e.g. more than 100 times the 

Nyquist frequency), and low pass filtering [Smith 2003]. 

 The SNR of coda wave signals can be determined either by (#1) estimating the system noise 

(DAC quantization noise, cabling noise, thermal noise, and electronic noise) by examining 

extremely late portions of the waveform (t > 2 ms) or (#2) by decoupling the transducers from the 

sample and collecting the signal. It should be noted that the SNR will change with different 

materials and coupling conditions9 [Adams 2007]. SNR estimation method #1 is illustrated in 

Figure 4-13. Table 4-4 Lists the measured SNR for coda waves in unidirectional CFRP as 

described by “specimen #1” (Table 4-2). The peak SNR was determined with a 0-1 ms time 

window while the 1 ms SNR was determined with a 0.95-1.05 ms time window. 

 Because of the differing definitions of what is noise and what is signal, the SNR of coda 

wave signals is often much higher than that of traditional ballistic UT signals. Since coda wave 

consist of reflected and scattered waves (traditionally termed noise), the only unwanted portions 

of the waveform is the random system noise, which can be reduced significantly by averaging, and 

the electronic noise, which is often only a few bins. In many cases SNR of 50-60 dB for the peak 

signal amplitude are not unreasonable. Recent work has demonstrated that useful information can 

still be extracted from coda waves with even when the SNR for the peak amplitude is 1 

                                                 
9 Private communications. Frank Margetan, Dan Barnard, September 2015-May 2016. 
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[Hadziioannou et al. 2009]. The work presented in this thesis uses data from coda waves signals 

with a 0-1 ms time window. 

 

 
Figure 4-11. Differentiation of what is considered signal and what is considered noise in a 

typical pulse-echo waveform. The signal was collected in quasi-isotropic CFRP with a 1MHz 

longitudinal transducer excited with a spike pulse. 

 

 
Figure 4-12. A typical signal collected from a Titanium sample showing the grain noise (Pn) and 

the flaw signal (Ps). [Howard et al. 1995]. 

 

 
Figure 4-13. Diagram of noise and signal to noise ratio estimation locations for SNR method 1. 

Signal shown was collected from a unidirectional CFRP plate as described by “Specimen #1” 

(Table 4-2). The signal was transmitted with a 1 MHz longitudinal transducer and was received 

with a 1 MHz shear transducer at a separation of 6 cm (Table 4-3). 
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Table 4-4. Signal to noise measurement results The waveforms were collected from a uni-

directional CFRP sample (Specimen #1). Signal was transmitted and received with 1 MHz 

longitudinal transducers. 

Method 
Signal 

Location 

Fiber 

Angle 

1 MHz L 

(dB) 

1 MHz S0 

(dB) 

1 MHz S90 

(dB) 

Pinducer 

(dB) 

1 

Peak 
0 55 50 55 58 

90 50 47 49 48 

1 ms 
0 5 5 12 12 

90 10 9 12 10 

2 

Peak 
0 60 60 50 55 

90 60 35 47 48 

1 ms 
0 13 14 8 9 

90 19 5 6 10 

L = longitudinal mode 

S0 = shear mode polarized along fiber 0˚ direction 

S90 = shear mode polarized along fiber 90˚ direction 

 

 

4.4.3 Waveform Reciprocity 

 The reciprocity of ultrasonic measurement systems was first introduced into the NDE 

community by Kino (1978) and Auld (1979) and has since been widely accepted [Thompson & 

Gray 1989, Schmerr & Song 2007]. To test the reciprocity of the measurement system used for 

this thesis specifically and of coda waves in general, signals were collected from an aluminum 

sample as described by “Specimen #2” (Table 4-2) where the signals were transmitted and received 

by 12.5 mm 2.25 MHz transducers as described in the experimental configuration above. 

 Visual comparison of two signals sent from left to right (forward wave) and one signal sent 

from right to left (backward wave) is shown inFigure 4-14. Figure 4-14a shows that signals as 

recorded while Figure 4-14b shows a small portion of the expanded signal corresponding to the 

black outline. No appreciable difference is visually discernable between the three waveforms. To 

quantify the degree of similarity between the forward and backward waves, the cross-correlation 

coefficient was computed at zero lag for the entire waveform (50 million pts). The average cross- 
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(a) (b) 

Figure 4-14. Example of the reciprocity of coda waves by switching the transmitting and 

receiving transducers. A) the full waveforms and b) enlarged section. The waveforms were 

collected from an aluminum sample as described by “Specimen #2” (Table 4-2). Signal was 

transmitted and received with 2.25 MHz longitudinal transducers. 

 

 

correlation coefficient for ten repeated forward signals is 0.9999 while the average coefficient 

between a forward and ten backward signals is 0.9988. This indicates a high degree of similarity 

between the forward and backward waves. 

 A better method to characterize the similarity or dissimilarity between waveforms is to use 

the differential signal features defined in Chapter 3. Ten forward and ten backward signals were 

compared (windowed 0-1.0 ms using a Tukey window), and the results are listed in Table 4-5. To 

give a reference for the values listed, several other comparisons are also made. The first row of the 

table confirms that the various differential features yield a value of zero for identical waveforms 

as expected. The second line shows the comparison of the two forward signals (10 signals each) 

with the same transducer emitting and the same transducer receiving in each case. Several of the 

differential features are listed, and the difference between the two forward signals are all on the 

order of 1/10,000 to 7/10,000. This is also a measure of repeatability. The next row shows the 

results when the second signal is reversed, which means that the transmitter and receiver are 

interchanged. The differential features are an order of magnitude larger than the previous line, but  
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Table 4-5. Characterization of the similarity in reciprocal waveforms using 

differential features (Ch. 5). The waveforms were collected from an aluminum 

sample as described by “Specimen #2” (Table 4-2). Signal was transmitted and 

received with 2.25 MHz longitudinal transducers. 

 
Etemp 

(V2s) 

Espec 

(V2s) 
LoCoh LoCor 

Forward 1 vs. Forward 1 0.00 0.00 0.00 0.00 

Forward 1 vs. Forward 2 3.30E-4 1.91E-4 7.36E-4 1.09E-4 

Forward 1 vs. Backward 7.56 E-3 4.00 E-3 1.20 E-3 3.68 E-3 

Forward 1 vs. Forward w/ 

0.794 mm through-hole 
4.00 E-2 8.47 E-2 3.52 E-2 1.99 E-2 

Etemp = residual temporal energy 

Espec = residual spectral energy 

LoCoh = loss of coherence 

LoCor = loss of correlation 

 

 

are still on the order of 1/1000 to 8/1000. Finally, the last row contains the results when the forward 

signal taken from a pristine sample is compared to the forward signal from the same sample but 

with a single through-hole of 0.794 mm diameter. It is needless to say the differential features will 

be larger, but what is noteworthy here is that the features are an order of magnitude larger but in 

the same range (i.e. 2/100 to 9/100). The comparison of several different waveforms shows: 

• Repeatability of the measurement: 20 signals were recorded with differential feature 

amplitudes within 1/1000. 

• Reciprocity of the measurement: 10 forward and10 backward signals were recorded with 

differential feature amplitudes within 1/100. 

• The presence of a single 0.794 mm (1/32”) diameter through-hole causes a change in the 

differential feature amplitudes which is an order of magnitude larger than the reciprocity 

variance and two orders of magnitude larger than the repeatability variance. 
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This is the first experimental confirmation of the repeatability and reciprocity of coda waves. 

Reciprocity holds for the experimental system used in the thesis specifically and coda waves in 

general. 

 

4.4.4 Waveform Linearity 

 One of the central objectives of this research is to convert coda wave methods from binary 

damage indicators to a mature, measurement based technique. Towards this end, the effect of the 

input power and pulser-receiver damping setting on the measurement have been studied. A field 

technician may not be aware of all the subtleties of the coda wave measurement. If the recorded 

signal and the final result are independent of the equipment used, then the instrument setting 

variability is removed, thus making the task of the user easier. 

 The system is operating linearly if no new or differing structures appear in the waveform 

or spectrum with changing input power level. A comparison of waveform amplitudes at 100% and 

50% input power for the three materials is shown in Figure 4-15. The waveforms are normalized 

to the maximum amplitude of the 100% power signal for each material. A 50% reduction in the 

power of the input signal corresponds to an amplitude reduction of ~40% for each sample and a 

60-65% reduction of energy, but no new/differing structures are apparent. Since no new or 

differing structures are present, the waveforms are considered to behave linearly. The correlation 

coefficient was calculated at zero time lag to confirm the similarity of the waveforms, which 

yielded correlation values of 0.9965, 0.9995, and 0.9980 for aluminum, CFRP, and polycarbonate 

respectively. The difference between the full and half power waveforms is very subtle, and could 

be attributable to noise. 
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(a1) (a2) 

  

  

(b1) (b2) 

  

  

(c1) (c2) 

Figure 4-15. Comparison of (1) waveforms and (2) spectra from full strength signals and signals 

with -6dB input collected from (a) aluminum, (b) CFRP, and (c) polycarbonate samples. The 

received waveforms are normalized to the maximum amplitude of the 100% power waveform for 

each pair.The signals are transmitted and received with a pair of 12.5mm longitudinal 

transducers (2.25 MHz for aluminum and 1 MHz for CFRP and polycarbonate) excited with a 

spike pulse. 
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 Adjusting the electrical impedance ratio between the pulser-receiver (PR) and the 

transducer is standard practice to maximize the received signal amplitude and reduce noise as 

much as possible. The impedance setting on the PR has the effect of damping the ring-down of the 

transducer. Lower damping (higher impedance) increases the length of the ring-down, which 

increases energy and decreases bandwidth. The cabling and transducer ideally have an electrical 

impedance of ~50  

 Figure 4-16 shows the envelope of the waveforms collected at pulser-receiver impedance 

settings of 94, 80, and 40  (corresponding to damping settings of 0, 3, and 6 respectively on the 

PR) for the three materials. Increasing the PR impedance from 80% to ~190% of the cable-

transducer impedance has the effect of drastically increasing the temporal energy of the received 

coda wave, especially at mid to late times: this is most notable for the polycarbonate sample 

(Figure 4-16c). The arrival time of the envelope peak amplitude also increases with increasing PR 

impedance: most notable in the CFRP sample (Figure 4-16b). The total waveform energy for all 

materials is plotted in Figure 4-16d. It should be noted that changing the damping setting on the 

PR does change the transfer function of the PR [Schmerr & Song 2007], which is the primary 

cause of small changes in waveform structures. 
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(a) (b) 

  

  
(c) (d) 

Figure 4-16. Comparison of waveforms collected from (a) aluminum, (b) CFRP, and (c) 

polycarbonate samples at three different PR damping settings. Plotted is the magnitude of the 

Hilbert transform. Total waveform energy is plotted in (d) for all materials. The signals are 

transmitted and received with a pair of 12.5mm longitudinal transducers (2.25 MHz for 

aluminum and 1 MHz for CFRP and polycarbonate) excited with a spike pulse. 
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CHAPTER 5. PROPAGATION OF CODA WAVES 

 

 This chapter discusses the propagation and attenuation of coda waves in carbo-fiber/epoxy 

plates. The influence of plate boundaries on coda waves is also discussed. Section 4.1 discusses 

the repeatability of coda wave measurements. The waveforms and spectra are discussed in Section 

5.2. Section 5.3 presents, analyzes, and discusses the results for the propagation and spreading 

function of coda waves. Several distinct measures of attenuation are then presented and discussed 

in Section 5.4. Finally, the work and conclusions presented in this chapter are summarized in 

Section 5.5. 

 

5.1 Repeatability 

 Coda waveforms themselves were shown earlier Section 4.4 to be both repeatable and 

reciprocal. Here the variances of several parameters that describe the coda waveform are 

examined. These parameters are shown in Figure 5-1 and include: peak amplitude, arrival time of 

the peak amplitude, spectral energy, and coda wave decay rate. 

 Multiple coda waveforms were collected from the 30x30 cm unidirectional CFRP and 

quasi-isotropic CFRP plate samples with an orientation of 0 and 90 degrees and from the 30x30 

cm Plexiglas plate sample with an orientation of 0 degrees to determine the repeatability of 

collection and processing. The transducer pair had a separation of 8 cm with the transmitter 

coupled using crystal bond and the receiver coupled using honey. A transducer separation of 8 cm 

was selected to maximize the signal energy while still providing high frequency content. Signals 

(200 averages) were collected ten times without detaching the receiver for all three configurations, 

and then ten signals were collected after detaching and reattaching the receiver in-between each 
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collection. Each of the collected signals were then averaged, processed and the mean and standard 

deviation of several parameters (Figure 5-1) are presented in Table 5-1 & Table 5-2. 

 The repeatability of measurements is characterizable by the sharpness of the measurement 

distribution. Thus the quality factor, Q, and the standard deviation, , can be used to quantify the 

repeatability of measurements. The percent variance is also a useful measure of repeatability since 

it quantifies the width of the measurement distribution compared to the mean value. Mean values 

of the measurement distributions are typically an order of magnitude (or more) greater than the 

standard deviation. This yields a percent variance that is generally lower than 5% for most of the 

parameters calculated. This is true even when detaching and reattaching the transducers, however, 

there is a marked increase in the percent variance and a decrease in the Q values due to the 

decoupling and recoupling process. 

 

 
Figure 5-1. Illustration of parameters that describe the coda wave. 
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Table 5-1. Repeatability of coda wave measurements with attached transducers. 

   
Peak Amplitude 

(mV) 

Arrival time of peak amplitude 

(s) 

Spectral Energy 

(mV2s) 

Coda Wave Decay Rate 

(np/ms) 

   


±
 Q 



%) 



± 
 Q 



%)



± 
 Q 



%)



± 
 Q 



%) 

C
F

R
P

 

[(
0

) 3
2
] S

 

0˚ 

L 27.1 5.78E-2 7.3 0.21 18.60 0.37 1.1 1.99 51.17 0.19 2.2 0.37 10.50 0.32 1.3 3.05 

S0 18.9 0.14 3.1 0.72 13.05 0.0 -- 0.00 25.00 0.34 1.2 1.36 10.32 0.18 2.4 1.74 

S90 4.2 6.72E-2 6.3 1.60 19.00 1.6E-2 26.5 0.08 1.26 0.015 28.3 1.19 8.92 0.16 2.7 1.79 

P 8.0 0.12 3.6 1.46 12.46 0.0 -- 0.00 16.73 0.52 0.8 3.11 14.35 0.12 3.5 0.84 

90˚ 

L 10.6 0.12 3.5 1.15 18.70 0.37 1.1 1.98 54.83 1.64 0.3 2.99 10.33 0.43 1.0 4.16 

S0 18.3 1.10 0.4 6.01 17.61 2.40 0.2 13.63 21.18 3.87 0.1 18.27 10.21 0.52 0.8 5.09 

S90 4.8 0.42 1.0 8.71 18.81 7.2E-2 5.9 0.38 1.30 0.19 2.2 14.62 9.20 0.72 0.6 7.83 

P 7.4 0.36 1.2 4.91 12.48 2.6E-2 16.3 0.21 16.34 0.61 0.7 3.73 13.40 0.48 0.9 3.58 

C
F

R
P

 

[(
0

/4
5

/-
4

5
/9

0
) 8

] S
 0˚ 

L 17.3 0.13 3.3 0.74 22.76 8.4E-3 50.6 0.04 27.35 0.26 1.6 0.95 8.85 2.6E-2 16.3 0.29 

S0 3.2 2.49E-2 17.1 0.78 22.74 0.0 -- 0.00 4.99 0.27 1.6 5.41 10.61 8.5E-2 5.0 0.80 

S90 0.76 6.5E-3 65.3 0.86 67.51 1.7E-2 25.1 0.03 0.71 6.8E-3 62.5 0.96 9.08 0.77 0.6 8.48 

P 2.8 1.37E-2 31.0 0.49 48.64 9.4E-3 45.2 0.02 6.59 6.9E-2 61.5 0.1 8.38 5.7E-3 74.5 0.07 

90˚ 

L 20.4 0.13 3.30 0.63 23.96 8.4E-3 50.6 0.04 21.18 0.23 1.8 1.09 8.58 4.0E-3 106.2 0.05 

S0 0.84 7.2E-3 59.0 0.86 26.04 1.1 0.4 4.22 0.97 1.0E-2 42.5 1.03 7.91 4.9E-2 8.7 0.62 

S90 3.3 4.93E-2 8.6 1.49 24.29 1.0E-2 42.5 0.04 6.46 0.41 1.0 6.35 10.89 4.5E-2 9.4 0.41 

P 2.5 2.47E-2 17.2 0.99 49.40 8.4E-3 50.6 0.02 7.83 0.17 2.5 2.17 9.23 2.6E-2 16.3 0.28 

P
le

x
ig

la
s 

0˚ 

L 11.1 0.21 2.10 1.86 45.34 2.0E-2 21.2 0.04 59.82 2.53 0.2 4.23 9.27 0.07 6.1 0.76 

S0 3.1 3.49E-2 12.2 1.13 58.36 2.1E-2 20.2 0.04 5.38 0.39 1.1 7.25 10.84 0.15 2.8 1.38 

S90 3.0 3.47E-2 12.2 1.16 58.02 1.9E-2 22.4 0.03 5.37 0.37 1.1 6.89 10.86 0.17 2.5 1.57 

P 2.7 2.75E-2 15.4 1.02 45.56 0.14 3.0 0.31 2.84 6.8E-2 6.2 2.39 9.02 5.4E-2 7.9 0.60 

L = 1 MHz longitudinal 

S0 = 1 MHz shear with polarization along the fibers 

S90 = 1 MHz shear with polarization transverse to fibers 

P = pinducer 

= mean 

 = standard deviation 

Q = quality factor 
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Table 5-2. Repeatability of coda wave measurements with detached and reattached transducers. 

   
Peak Amplitude 

(mV) 

Arrival time of peak amplitude 

(s) 

Spectral Energy 

(mV2s) 

Coda Wave Decay Rate 

(np/ms) 

   


±
 Q 



%) 



± 
 Q 



%)



± 
 Q 



%)



± 
 Q 



%) 

C
F

R
P

 

[(
0

) 3
2
] S

 

0˚ 

L 27.9 0.44 1.0 1.58 36.65 0.00 -- 0.00 37.76 0.52 0.8 1.38 10.22 0.26 1.6 2.54 

S0 1.2 2.0E-2 21.2 1.67 54.35 1.58E-2 26.9 0.03 0.56 0.02 21.2 3.57 8.31 0.02 21.2 0.24 

S90 2.0 4.48E-3 94.8 0.22 49.00 1.6E-2 26.5 0.03 0.95 0.00 -- 0.00 10.31 0.26 1.6 2.52 

P 2.1 1.12E-2 37.9 0.53 44.51 9.7E-2 4.4 0.22 4.55 0.07 6.1 1.54 8.86 0.03 14.2 0.34 

90˚ 

L 12.0 0.63 0.7 5.25 38.66 3.11 0.1 8.04 44.06 2.49 0.2 5.65 10.44 0.21 2.0 2.01 

S0 1.2 0.13 3.3 10.83 54.04 0.19 2.2 0.35 0.46 0.11 3.9 23.91 8.70 0.27 1.6 3.10 

S90 2.7 0.31 1.4 11.48 48.75 0.18 2.4 0.37 1.94 0.25 1.7 12.89 10.37 0.29 1.5 2.80 

P 2.3 9.9E-2 4.3 4.30 44.56 4.8E-2 8.8 0.11 5.33 0.26 1.6 4.88 9.25 0.12 3.5 1.30 

C
F

R
P

 

[(
0

/4
5

/-
4

5
/9

0
) 8

] S
 0˚ 

L 16.0 0.61 0.7 3.81 22.96 9.7E-2 4.4 0.42 24.61 0.13 3.3 0.53 8.50 0.22 1.9 2.59 

S0 3.6 0.15 2.8 4.17 19.02 1.31 0.3 6.89 5.40 0.27 1.6 5.00 10.84 0.23 1.8 2.12 

S90 0.68 8.02E-2 5.3 11.79 75.08 5.21 0.1 6.94 0.55 0.16 2.7 29.09 10.54 0.77 0.6 7.31 

P 2.8 7.89E-2 5.4 2.82 48.64 1.91E-2 22.2 0.04 7.18 0.32 1.3 4.46 8.77 0.20 2.1 2.28 

90˚ 

L 20.3 0.62 0.7 3.05 23.86 9.3E-2 4.6 0.39 20.08 0.78 0.5 3.88 8.35 0.26 1.6 3.11 

S0 0.82 6.88E-2 6.2 8.39 28.45 6.80 0.1 23.90 0.85 8.99E-2 4.7 10.58 9.24 0.52 0.8 5.63 

S90 3.4 0.14 3.0 4.12 22.90 1.63 0.3 7.12 5.84 0.47 0.9 8.05 11.87 0.78 0.5 6.57 

P 2.5 8.75E-2 4.9 3.50 49.39 6.87E-2 6.2 0.14 7.71 0.32 1.3 4.15 9.32 0.40 1.1 4.29 

P
le

x
ig

la
s 

0˚ 

L 11.4 0.48 0.9 4.21 47.90 1.87 0.2 3.90 63.61 2.09 0.2 3.29 10.85 1.18 0.4 10.88 

S0 3.4 0.23 1.8 6.76 45.13 4.65 0.1 10.30 5.19 0.80 0.5 15.41 10.67 0.35 1.2 3.28 

S90 3.6 0.22 1.9 6.11 45.19 4.75 0.1 10.51 5.23 0.83 0.5 15.87 10.59 0.41 1.0 3.87 

P 2.7 5.49E-2 7.7 2.03 45.59 0.14 3.0 0.31 2.75 6.8E-2 6.2 2.47 8.92 0.65 0.7 7.29 

L = 1 MHz longitudinal 

S0 = 1 MHz shear with polarization along the fibers 

S90 = 1 MHz shear with polarization transverse to fibers 

P = pinducer 

 = mean 

 = standard deviation 

Q = quality factor 
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5.2 Waveform and Spectra Analysis 

 Typical waveforms and spectra collected throughout this thesis are shown in Figure 5-3. 

Similar waveforms can be received anywhere on the plate (specimen #1), save for when the 

receiver is directly across from the transmitter on the opposite face or within several transducer 

diameters (then the signal resembles a pulse-echo signal). The coda wave amplitude does diminish 

with increasing separation, which is dictated by the quality10 of the material (specifically 

composite material quality) under inspection. 

 Periodic and decaying arrivals, such as those observed for multiple back-wall echoes, cause 

spectral peaks in the frequency domain with a specific separation of f = c/2h, where h is the plate 

thickness [Kinra & Dayal 1988]. As an example, for an aluminum plate, the thickness resonance 

peaks should be at f = 6300/(2*6.35E
-3) = 0.496 MHz. These peaks can be asily seen in Fig. 5-2 

a2 and 5.3 a2. For composite materials, the velocity used is that of a longitudinal wave propagating 

in the thickness direction. The existence and generation of these spectral resonances is shown in 

Figure 5-2 for aluminum, quasi-isotropic CFRP, and polycarbonate. It has been suggested that the 

noisiness of coda spectra may be due in part to similar resonances [Kautz 1988]. 

 It has been noted [Krautkramer & Krautkramer 1969] that layered interfaces along an 

ultrasonic ray path give rise to multiple arrival times in the waveform that show up as peaks in the 

spectrum. Kautz (1988) notes that spectral peaks are also caused by arrival of signals from different 

propagation paths. The coda wave spectra, which may otherwise be referred to as noisy, are full 

of interfering spectral peaks that may be caused by a specific path resonance or the many varied 

paths taken by acoustic energy due to multiple scattering. 

                                                 
10 Quality is used here as a catch-all and refers to the amount a defects (e.g. porosity) introduced during 
fabrication, the level of homogeneity of the laminate, and the precision/strength of the fibers. 
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(a1) (a2) 

  

  

(b1) (b2) 

  

  

(c1) (c2) 

Figure 5-2. Demonstration of thickness resonances in the (2) spectra by changing window length 

in the (1) waveforms from signals collected from (a) aluminum, (b) CFRP, and (c) 

polycarbonate. The dashed line encompasses a single back-wall echo while the dotted line 

encompasses three back-wall echoes. 
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 Large, periodic spectral peaks can be observed in the coda wave spectra in Figure 5-3, 

though not nearly as well defined as the spectral peaks in Figure 5-2. A comparison of the spectral 

peaks in the two figures indicates that the peaks in the coda wave spectra do correspond to a 

thickness resonance. This apparent thickness resonance is caused by the periodic release of the 

acoustic energy that is confined between the transmitter and the back-wall. For each successive 

trip downwards from the transmitter, a certain percentage of the acoustic energy is scattered away 

from the path of the beam. Since the structure does not change in between successive passages of 

the acoustic energy, it can be assumed that the portion of energy that is scattered away from the 

incident beam will always take the same path to the receiver, thus arriving t = 2h/c after the 

previous arrival and exhibiting an apparent attenuation equivalent to that of successive back-wall 

reflections. 

 Figure 5-3 shows that the majority of acoustic energy is clustered around the peak 

frequency of the coda wave in the tens to hundreds of kHz, but small amounts of energy exist into 

the low MHz range (Figure 5-3).  

 A defect in the structure causes interaction between the defect and the propagating wave 

modes. The relative size of the defect to the wavelength of the propagating wave is an important 

factor in understanding the scattering interaction between the two. Table 5-3 lists the ratio of defect 

size to wavelength for the materials and defect sizes considered in this study. Here the wavelength 

corresponds to the longitudinal velocity (L) or the shear velocity (S). For composite materials, the 

fastest and slowest of each wave type is used as denoted by the “fast” and “slow” subscripts. The 

additional scattering due to the introduction of defects is primarily Rayleigh scattering based on 

the wavelength to hole diameter ratio for the majority of coda wave energy, which is not possible 
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to differentiate from the complex coda waveform. The small amounts of energy in the MHz range 

experience intermediate to specular scattering for the majority of defect sizes. 
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Figure 5-3. Representative (1) waveforms and (2) spectra collected from (a) aluminum, (b) 

CFRP, and (c) polycarbonate. The signals are transmitted and received with a pair of 12.5mm 

longitudinal transducers (2.25 MHz for aluminum and 1 MHz for CFRP and polycarbonate) 

excited with a spike pulse. 
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Table 5-3. Range of defect size to wavelength 

ratios for various wavelengths in various materials. 

 
Frequency 

Wave 

type 
d/ 

Aluminium 

6061s 

fc 
L 0.0125- 0.25 

S 0.025 – 0.5 

fmax 
L 0.16 – 3.2 

S 0.32 – 6.4 

Polycarbonate 

fp 
L 0.0088 – 0.18 

S 0.018 – 0.35 

fmax 
L 0.18 – 3.5 

S 0.36 – 7.0 

CFRP (quasi-

isotropic) 

Toray P2353W-

19 

fp 

Lfast 0.002 – 0.04 

Lslow 0.006 – 0.12 

Sfast 0.008 – 0.16 

Sslow 0.012 – 0.24 

fmax 

Lfast 0.062 – 1.2 

Lslow 0.22 – 4.4 

Sfast 0.25 – 4.8 

Sslow 0.44 – 8.8 

Fp = peak frequency of coda wave 

fmax = frequency peak at -40 dB maximum spectral amplitude 

d = the effective diameter of drilled holes 

 = wavelength in the material at the specified frequency 

 

 

5.3 Spreading Function 

 Waveforms were collected from the specimens (30x30 cm) described in Figure 4-1 were 

analyzed to determine several propagation and attenuation parameters: peak amplitude, arrival 

time, spectral energy, amplitude and energy attenuation, and power decay rate. The signals were 

collected from simply supported, pristine samples at room temperature11 (21.2 ˚C ± 2.1). The 0-

1000 s time windows considered were identical across all specimens and receivers and were 

selected to include more than 99.9% of the temporal energy and exclude the bleed-through of the 

excitation used in the pulser-receiver. Increasing the window length to encompass the full 2000 s 

                                                 
11 Samples were kept in the lab for a minimum of 12 hours before testing to allow the sample temperature 
equilibrate with the ambient temperature of the lab, which varied by less than 0.1˚C for the several hours before 
and during the experiment. 
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of recorded data did not affect the results. Unless otherwise stated, all spectrograms were 

calculated for the entire 0-1000 s time window and a frequency window from 0 to 1.5 MHz: 

again this frequency range encompasses more than 99.9% of the spectral energy for all signals. 

 Traditional ultrasonic inspection detects and characterizes damage/defects through the 

examination of waveform parameters. Typical parameters include: peak amplitude, arrival times 

of different portions of the waveform, and waveform energy [ASM 1989, Henneke 1990, Hsu 

2013]. In order to determine the behavior of coda waves in composite plates, four waveform 

parameters are extracted and examined for each of the three orthogonal components (longitudinal, 

shear 0˚, and shear 90˚) of the coda wave field at the plate surface. The parameters examined in 

this section are: peak waveform amplitude, first arrival of acoustic energy, arrival time of peak 

amplitude, and waveform spectral energy. Measuring these parameters at various locations on the 

plate helps to map out the wave field and determine the coda wave spreading function. This will 

help predict the behavior and the values of the wave parameters in future applications. The 

spreading function is also useful in determining the optimal transducer placement in addition to 

the spread and decay of information. 

 A truly diffuse wave field, which is one of the models for coda waves, ideally has equal 

energy at every spatial location within a volume. The samples under examination in this chapter 

are not small, lossless volumes; therefore, the energy should vary with spatial location. In 

particular, the waveform amplitude and energy should decay with transducer separation. Based on 

this consideration, several trends can be expected regarding the behavior of the wave parameters 

in the various samples. For isotropic, homogeneous materials (in this case the Plexiglas and the 

quasi-isotropic CFRP), which are identical in all directions, the peak amplitude and the waveform  
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Figure 5-4. Illustration of bulk wave mode phase velocities for a unidirectional composite plate 

where the modes are propagating in the plane of the plate and (r, ) in the plot correspond to 

velocity and fiber angle respectively [Rokhlin et al. 2011]. 

 

energies are expected to be uniform with  and decrease exponentially with r. The arrival times 

should likewise be uniform with  but decrease linearly with r. These should result in a circularly 

expanding, exponentially decaying spreading function. For unidirectional composite plates 

(transversely isotropic), wave modes propagating in the plane of the plate exhibit 

dumbbell/elliptical spreading functions with the semi-major axes aligned to the fiber direction 

since the fibers support a much higher wave velocity than the transverse direction (Figure 5-4). 

Arrival times are then expected to vary linearly with r and elliptically (or with a dumbbell shape) 

with Wave modes propagating along the fibers travel faster and experience less attenuation than 

the wave modes propagating in the transverse direction. The waveform energy is therefore also 

expected to vary elliptically with  but exponentially with r. These should result in an elliptically 

(or with a dumbbell shape) expanding, exponentially decaying spreading function. 

 Typical rectified waveforms collected from unidirectional CFRP, quasi-isotropic CFRP, 

and Plexiglas plates are shown in Figure 5-5 for transducers pairs aligned with the 0˚ and 90˚ fiber 

angles. Peak amplitudes are indicated by black circles for ease of identification. The waveforms 

exhibit the expected behavior. The waveforms from the isotropic (or quasi-isotropic) plates are 
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very uniform in , with cross-correlation coefficients greater than 0.90. The cross-correlation 

coefficient decreases with transducer separation and slight differences in the waveform cross-

correlations and locations of the peak amplitude arrivals can be observed. These are caused by 

imperfect symmetry in the coda wave superposition field caused by imperfections in the 

homogeneity of the plates. As expected, less waveform uniformity in  is observed for the quasi-

isotropic CFRP plate compared to the Plexiglas plate since composite materials are less 

homogeneous than Plexiglas. The waveforms from the transversely-isotropic plate show no 

uniformity in  and the energy arrives nearly three times faster for the 0˚ orientation compared to 

the 90˚ orientation, both of which are expected. 

 Figure5-6 shows typical spectra collected from unidirectional CFRP, quasi-isotropic 

CFRP, and Plexiglas plates for transducers pairs aligned with the 0˚ and 90˚ fiber angles the spectra 

shown correspond to the waveforms shown in Figure 5-5. Again it is noted that the isotropic (quasi-

isotropic) plates show much more uniformity in  than the transversely-isotropic plate where the 

isotropic plates exhibit cross-correlation values greater than 0.9. Reductions in the cross-

correlation and hence the uniformity are observed for the quasi-isotropic CFRP plate compared to 

the Plexiglas plate, which is due again to the imperfect homogeneity of the material. The spectral 

energy for the unidirectional plate occurs within a 0.25-1.0 MHz bandwidth for the 0˚ orientation 

while energy for the 90˚ orientation occurs below 0.5 MHz. This difference in spectral energy is 

expected since the fiber dominated propagation supports higher frequencies while the matrix 

dominated propagation attenuates higher frequencies. Note that the difference in spectral 

amplitude between the 0˚ and 90˚ fiber angles is accompanied by a difference in the spread of the 

spectral energy, which indicates that the total energy may be uniform in  for transversely-isotropic 

materials. This is explored further below. 
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(a1) (a2) 

  

  
(b1) (b2) 

  

  
(c1) (c2) 

Figure 5-5. Typical rectified ultrasonic waveforms collected at 1) 0˚ and 2) 90˚ fiber orientations 

from one-sided pitch-catch UT on a 30x30x0.9cm a) unidirectional CFRP plate, b) quasi-

isotropic CFRP plate and c) Plexiglas plate. Signal was transmitted and received with a 1.25 cm, 

1 MHz P-wave transducer. The peak amplitudes are indicated with black circles. 
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(b1) (b2) 

  

  
(c1) (c2) 

Figure5-6.Typical rectified ultrasonic spectra collected at 1) 0˚ and 2) 90˚ fiber orientations from 

one-sided pitch-catch UT on a 30x30x0.9 cm a) unidirectional CFRP plate, b) unidirectional 

CFRP plate and c) Plexiglas plate. Signal was transmitted and received with a 1.25 cm, 1 MHz 

P-wave transducer. 
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 Arrival times can be very useful in determining the spreading function of a wave mode. 

Even though the coda wave is a superposition of multiple modes, the first arrival time of the coda 

wave will correlate to the arrival of a specific wave mode. The first arrival of energy must occur 

after a characteristic time defined by the fastest possible wave mode traveling the shortest possible 

trajectory between transmitter and receiver. The arrival times are therefore expected to increase 

linearly with increasing transducer separation. 

 The first arrival times presented here are defined as the time of the first crossing of a set 

amplitude threshold. Typically, in ultrasonic NDE the amplitude threshold is set to an arbitrary 

amplitude that is large than the noise floor or is set to a specified signal-to-noise ratio. The intent 

of either threshold is to determine the arrival time of the signal while eliminating false arrivals due 

to noise. Some of the collected waveforms (specifically the shear components) suffered from 

significant bleed through from the spike pulse, which made setting a noise based threshold 

difficult. The threshold was therefore defined as -40 dB from the peak amplitude as opposed to a 

specific signal-to-noise ratio. Phase cancellation is a concern for large diameter transducers when 

more than one wave mode is arriving at the same time. For first arrivals there should only be a 

single mode, and hence there should be no phase cancellation, and a pinducer is employed in 

addition to the 12.7 mm transducer for confirmation purposes. 

 Figure 5-7 & Figure 5-8 plot the measured first arrival times for the isotropic, quasi-

isotropic, and transversely isotropic plates while the first arrival times for various wave modes 

traveling 4 cm as shown in Table 5-4 for comparison purposes. It should be noted that absolute 

first arrival time measurements are approximate due to the uncertainty in selecting the actual first 

arrival and in determining the travel distance. For the single sided configuration used, the travel 
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path of the wave modes is not necessarily a direct path from transmitter-center to receiver-center. 

The travel path could be from the transmitter-edge to the receiver-edge, which for this 

configuration would reduce the path length by 1.27 cm. Comparative velocity measurements are 

more accurate since the same point on the waveforms is used and the change in travel distance is 

known. For this reason, the relative arrival time between 4 and 8 cm is also included in Table 5-4. 

 First arrival times in the unidirectional CFRP plate are linearly increasing with separation, 

which indicates the ballistic arrival of a wave mode as expected. Comparing the first arrival times 

and relative arrival times with the calculated arrival times of various wave modes indicates that 

the first arriving wave modes are likely longitudinal modes for low fiber angles and shear modes 

for high fiber angles since the arrivals are within a few microseconds of the mode arrivals. For 

intermediate fiber angles, the arrival times are between the longitudinal and shear arrivals and are 

therefore more likely to be scattered or reflected versions of the longitudinal or shear wave modes. 

There is also the possibility of the first arrival being caused by a symmetric Lamb wave mode at 

low frequency-thickness since the symmetric mode velocity falls in between the longitudinal and 

shear mode velocities. This possibility is explored further in the next section. The first arrival time 

measured from the pinducer signals agree within a six percent with those measured the 12.7 mm 

signals, which means that phase cancellation is not an issue for first arrivals as postulated. Based 

on the first arrival times, the coda wave spreading function for unidirectional CFRP laminates is 

elliptical. 

 For the sake of comparing and contrasting transversely isotropic and isotropic materials, 

the first arrival times for coda waves collected from a Plexiglas plate were also measured. Since 

the sample is homogeneous and isotropic, the ballistic arrivals should be linearly increasing with 

travel distance and the spreading function should be circular. This is indeed the case for this sample 
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since the arrival times for 0˚, 45˚, and 90˚ all increase linearly and agree with each other to within 

a six percent. As with the unidirectional CFRP plate, the first arrival correlates well with the arrival 

of a ballistic longitudinal mode, but a low frequency-thickness symmetric Lamb wave mode is 

also possible. Some variability is observed in 12.7 mm transducer data, which is due to imperfect 

homogeneity and imperfect coupling, but the agreement between the data is improved when using 

the pinducer. 

 When examining just the longitudinal component of the coda wave first arrival, the arrival 

times strongly indicate either a longitudinal arrival or a low frequency-thickness symmetric Lamb 

wave. Considering the two surface shear components of the coda wave adds more information to 

the analysis. It is very interesting that both shear components arrive within a few s of the 

longitudinal component. This is too fast to be a shear wave, which leaves only three possible 

sources of the shear components: 1) a longitudinal wave coming in at an angle, 2) a Lamb wave, 

or 3) the Poisson effect from a longitudinal or Lamb wave. The particle displacement for a Lamb 

wave is retrograde elliptic, but 2D, which means the transverse displacement parallel to the 

direction of propagation is due to the elliptical motion and the transverse displacement 

perpendicular to the direction of propagation would have to be due to Poisson’s effect and should 

be approximately 1/3 the parallel displacement. If the first arrival is a longitudinal wave, there will 

also be transverse components due to Poisson’s effect. The transverse displacements do not follow 

these pattern, which indicates that the first arrival is a longitudinal mode arriving at an angle. 
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(a1) (b1) 

  

  
(a2) (b2) 

  

  
(a3) (b3) 

  

  
(a4) (b4) 

Figure 5-7. First arrival time of the received waveform for amplitude with S:N = 30 for a) a 0.9 

cm unidirectional CFRP plate and b) a 0.9 cm Plexiglas plate. Signal was transmitted with a 1.25 

cm, 1 MHz longitudinal transducer and received with 1) 1 MHz L, 2) 1MHz S0, 3) 1MHz S90, 

and 4) pinducer transducers. 
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(a) (b) 

  

 
(c) 

Figure 5-8. First arrival time of the received waveform for amplitude with S:N = 30 for a) a 0.9 

cm unidirectional CFRP plate, b) a 0.9 cm quasi-isotropic CFRP plate and c) a 0.9 cm Plexiglas 

plate. Signal was transmitted and received with a 1.25 cm, 1 MHz longitudinal transducer. 

 

 

Table 5-4. Calculated ballistic arrival times (s) for various wave modes for a 4 cm center-to-

center travel path and measured coda wave first arrival times with a 4 cm separation. 

 Unidirectional CFRP Plexiglas 
 0˚ 15˚ 30˚ 45˚ 60˚ 90˚ 0˚ 

tcl 3.99 4.12 4.56 5.46 7.34 12.31 14.52 
tcs1 18.18 17.47 16.39 15.21 14.29 17.94 31.50 
tcs2 17.78 18.18 19.05 20.41 22.10 24.24 31.50 
tcR -- -- -- -- -- -- 33.72 
tcw 8.70 9.65 12.10 17.55 22.30 19.20 13.68 

tcw 4.25 11.65 13.70 24.00 19.50 19.40 19.54 
l = longitudinal 
s = shear 
R = Rayleigh wave 
cw = coda wave 
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 Figure 5-8 shows the comparison the longitudinal coda wave component for the three 

material models. Only a single plot of the quasi-isotropic results is shown since the data trends are 

the same as those for the isotropic material, but with a little more scatter in the data due to the 

imperfect isotropy and homogeneity of the plate. The dependence of the arrival time on fiber angle 

is clear for the transversely isotropic material while the quasi-isotropic material exhibits almost no 

angular dependence and the isotropic material exhibits no angular dependence. 

 Although the coda wave first arrival should consist of a single wave mode that either arrives 

directly of is scattered/reflected a single time, the three orthogonal wave components at the surface 

of the plate make identification of the wave mode difficult. A symmetric Lamb wave mode seems 

a likely candidate for the first arrival until the shear components are included. Nearly identical 

arrival times or the three components and amplitudes that disagree with Lamb waves make the 

longitudinal mode the most likely candidate for the coda wave first arrival. 

 Another waveform parameter that is useful in determining the spreading function of a wave 

mode is the spectral energy of the waveform. This parameter describes the propagation and decay 

of information. Given that all wave modes that superimpose to create the coda wave decay 

exponentially with travel distance, the total spectral energy of the coda wave is also expected to 

decay exponentially with increasing transducer separation. The coda wave spectral energies are 

plotted in Figure 5-9 & Figure 5-10 for the isotropic, quasi-isotropic, and transversely isotropic 

plates. All energies are normalized to the highest energy and converted to dB. Therefore, an 

exponential decay will appear linear. With a few notable exceptions, the coda wave energies do 

decay exponentially (least squares fit) with increasing transducer separation. A plausible reason 

for the exceptions is that there may be some constructive/destructive interference of some modes 

at certain distances. 
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(a1) (b1) 

  

  
(a2) (b2) 

  

  
(a3) (b3) 

  

  
(a4) (b4) 

Figure 5-9. Spectral energy of the received waveforms for a) a 0.9 cm unidirectional CFRP plate 

and b) a 0.9 cm Plexiglas plate. Signal was transmitted with a 1.25 cm, 1 MHz longitudinal 

transducer and received with 1) 1 MHz L, 2) 1MHz S0, 3) 1MHz S90, and 4) pinducer 

transducers. 



www.manaraa.com

120 
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(c) 

Figure 5-10. Spectral energy of the received waveforms for a) a 0.9 cm unidirectional CFRP 

plate, b) a 0.9 cm quasi-isotropic CFRP plate and c) a 0.9 cm Plexiglas plate. Signal was 

transmitted and received with a 1.25 cm, 1 MHz longitudinal transducer. 

 

 

5.4 Attenuation 

 Attenuation measurements can be very useful for ultrasonic NDT&E by assisting with the 

determination of configuration parameters (such as travel distance) for experimental 

measurements or directly measuring microstructure (such as porosity in CFRP [Jeong & Hsu 

1995]). Coda wave signals, however, are not traditional propagating waves and traditional 

definitions for ultrasonic wave parameters do not necessarily apply to coda waves. Alternate 

definitions of attenuation must be sought that yield useful information about the behavior of the 

coda wave field. Several attenuation definitions are explored and analyzed in this section. 
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5.4.1 Spatial Attenuation 

 As described above (Section 3.2.1), division of sequential signal pulses in the frequency 

domain, also known as the pulse-overlap method [Kinra & Dayal 1988], is a straight forward 

method of determining the frequency dependent attenuation of harmonic waves propagating in 

space. This method of attenuation measurement is very well suited to pulse-echo configurations 

because the transfer functions of the two pulses contain identical information save for the material 

transfer function of the difference in path length between them. The key assumption to this method 

is that both pulses contain the same spectral content where the spectral amplitude of the second 

pulse is lower than the amplitude of the first pulse. As shown above and in Figure 5-11b, this is 

generally not the case with coda wave spectra as the transducer separation distance is increased. 

Indeed, frequently the spectral amplitude increases with separation distance as can be seen. Thus 

the pulse-overlap method is not applicable for coda wave attenuation measurement and is included 

in here only for completeness. 

 The resulting frequency dependent amplitude attenuation of coda waveforms collected 

from the unidirectional CFRP plate with the transducer pair aligned to 0˚ fiber orientation is shown 

in Figure 5-11a while the corresponding spectra are shown in Figure 5-11b. Negative amplitude 

attenuation values are readily apparent. It is a tendency to erroneously assume that negative 

attenuation values mean energy is being added to the system and that the signals are growing in 

strength as they propagate, which would violate conservation laws. A negative attenuation does 

not indicate the addition of energy, but in actuality it merely means that the amplitude of the second 

point is greater than the amplitude of the first point. Keep in mind that coda wave signals are not 

propagating waves but are spatially sampled, time-dependent superposition field. Thus coda wave 

signals need not follow the same restrictions as propagating harmonic waves. Also note that 
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amplitude measurements taken from various locations on a plate that is resonating will also yield 

negative attenuation as illustrated in Figure 5-12. This is a simple illustration that traditional 

definitions for ultrasonic wave parameters do not necessarily apply to coda waves.  

 The most basic definition of attenuation is the decay of waveform (or wavelet) peak 

amplitude with increasing travel distance. This definition is logical for a single traveling wave 

mode as it measures the loss of information with travel distance due to scattering and absorption, 

but may not be very applicable to a superposition of multiple wave modes. One of the best methods  

 

  
(a) (b) 

Figure 5-11. Attenuation calculated by frequency domain division with a) typical attenuation 

curves and b) typical spectra of waveforms collected at different transducer separations. 

Measurements were made on a 0.9 cm unidirectional CFRP plate with transducer separations as 

listed. The signal was transmitted and received with a 1.25 cm, 1MHz longitudinal transducer. 

 

 

Figure 5-12. Illustration of positive and negative attenuation due to measuring the amplitudes of 

a plate resonance mode at various locations. 
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of characterizing the loss of information with travel distance for coda waves would be to use a 

parameter that characterizes the entirety of the waveform, such as spectral energy. In this case the 

decay of energy correlates to the decay of information. Both of these attenuation measures were 

applied to the coda wave components collected from the isotropic, quasi-isotropic, and 

transversely isotropic plates. The attenuations are determined by fitting a line to the natural 

logarithm of the peak amplitude (or spectral energy) versus transducer separation plots using least 

squares. The slope of the line is the attenuation while the standard error of the fit is the 

measurement error. Typical attenuation results and corresponding coefficients of determination 

(R2) are plotted in Figure 5-13. R2 > 0.6 is considered a good fit, and the majority of the data yield 

R2 values greater than 0.9, which indicates that the reductions in amplitude and spectral energy are 

well described by an exponential decay. The lowest R2 value observed is 0.4. 

 The measured attenuation of the peak amplitudes and the spectral energies are plotted in 

Figure 5-14 & Figure 5-15. The spatial attenuation of a waveform (or wavelet) in an isotropic 

material, regardless of whether it is the attenuation of the peak amplitude or the energy, is expected 

to be insensitive to orientation angle. 

 

 

Figure 5-13. Typical results (Figure 5-14a1) from fitting an exponential to the data sets using 

least squares where  is the value of the exponential decay and R2 is the coefficient of 

determination between the fit line and the data set. 
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(a2) (b2) 

  

  
(a3) (b3) 

  

  
(a4) (b4) 

Figure 5-14. Attenuation of peak amplitude and spectral energy due to increasing transducer 

separation with fiber angle for a 30x30x0.9 cm a) unidirectional CFRP plate and b) Plexiglas 

plate. Signal was transmitted with a 1.25 cm, 1 MHz longitudinal transducer and received with 1) 

1 MHz L, 2) 1MHz S0, 3) 1MHz S90, and 4) pinducer transducers. 



www.manaraa.com

125 

 

 

 

  
(a) (b) 

  

 
(c) 

Figure 5-15. Attenuation of peak amplitude and spectral energy due to increasing transducer 

separation with fiber angle for a) a 0.9 cm unidirectional CFRP plate, b) a 0.9 cm quasi-isotropic 

CFRP plate and c) a 0.9 cm Plexiglas plate. Signal was transmitted and received with a 1.25 cm, 

1 MHz longitudinal transducer. 

 

 

 The spatial attenuations of coda wave peak amplitudes and spectral energies may provide 

a measure of the decay of the information carried in waveform as the waveform spreads, but gives 

no indication of the spatial decay of specific frequency components. Typically, the frequency 

dependent attenuation is determined by the pulse-overlap method, but this method is not applicable 

as demonstrated previously. To overcome this, the coda wave spectra are equipartitioned using 

Tukey windows with 12.5% tapers on both sides then inverse transformed back into the time 

domain. The natural logarithm of the peak amplitudes of the time domain waveforms 

corresponding to a specific frequency bin are then plotted versus transducer separation and a line 

is fit to the data using least squares linear regression. The attenuation for that particular center 
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frequency is then the slope of the line and the error in the attenuation measurement is the standard 

error of the fit. 

 Attenuation results and corresponding coefficients of determination (R2) are plotted in 

Figure 5-16. R2 > 0.6 is considered a good fit, and the majority of the data yield R2 values greater 

than 0.8, which indicates that the reduction in amplitude is well described by an exponential decay. 

Several R2 values are quite low (mostly along the 0˚ orientation for the unidirectional CFRP). This 

is typically caused by a single datum that is significantly out of alignment with the other data 

during the regression, which is usually caused by significant differences in the spectra with 

increasing separation. The spectra for the 0˚ orientation for the unidirectional CFRP exhibits the 

most variation with respect to transducer separation. This is similar to one of the issues that 

invalidated the pulse-overlap method for coda waves. Poor regression fits usually result in negative 

attenuations. 

 

 

 
Figure 5-16. Example results from fitting an exponential to the frequency windowed data sets 

using least squares where  is the value of the exponential decay and R2 is the coefficient of 

determination between the fit line and the data set. 
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(a1) (b1) 

  

  
(a2) (b2) 

  

  
(a3) (b3) 

  

  
(a4) (b4) 

Figure 5-17. Frequency-windowed attenuation of peak amplitude due to increasing transducer 

separation with fiber angle for a) a 0.9 cm unidirectional CFRP plate and b) a 0.9 cm Plexiglas 

plate. Signal was transmitted with a 1.25 cm, 1 MHz longitudinal transducer and received with 1) 

1 MHz L, 2) 1MHz S0, 3) 1MHz S90, and 4) pinducer transducers. 
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(c) 

Figure 5-18. Frequency-windowed attenuation of peak amplitude due to increasing transducer 

separation with fiber angle for a) a 0.9 cm unidirectional CFRP plate, b) a 0.9 cm quasi-isotropic 

CFRP plate and c) a 0.9 cm Plexiglas plate. Signal was transmitted and received with a 1.25 cm, 

1 MHz longitudinal transducer. 

 

 Frequency dependent attenuation results are plotted in Figure 5-17 & Figure 5-18 for the 

three materials and the wave components. The difficulty in measuring the coda wave attenuation 

for the unidirectional CFRP sample at 0˚ orientation is clear, and most of the data must be 

discarded. Attenuation of the longitudinal component increases with frequency until 0.5 MHz then 

plateaus. It also increases with fiber angle until 45˚ then decreases slightly until 90˚. This agrees 

with the peak amplitude observations. In a similar manner, there is also disagreement between the 

longitudinal attenuation measured with the 12.7 mm and 2 mm transducers. The differences in 

peak amplitude was due to the phase cancellation, but the differences in attenuation are due to the 

increased noisiness of the pinducer spectra. The attenuation of the shear components shows a 

general upward trend without plateauing.  
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 For an ideal, symmetrically expanding wave field the isotropic and quasi-isotropic 

attenuation curves should be insensitive to orientation angle. This is not the case, however, with 

the measured coda wave attenuation as the data exhibits significant variation with orientation. The 

superposition field is not composed of ideal, symmetrically expanding wave fields and as such 

there is no reason to suppose that the coda wave field itself is circularly symmetric or that the 

attenuation should be insensitive to orientation. 

 

5.4.2 Temporal Attenuation 

 The above methods of measuring coda wave attenuation attempt to quantify how the coda 

wave field attenuates with distance. These measurements do not decouple scattering loss and 

absorption loss and thus are measures of apparent attenuation. The coda wave decay rate, on the 

other hand, is a measure of how the wave field sampled at a single spatial point attenuates with 

time. For a multiply scattered wave field (one that can be modeled with the diffusion equation) the 

decay rate should be a measure of non-scattering loss mechanisms [Weaver 1987]. This includes 

both absorption and energy leakage, but the leakage into air is negligible since the normal 

incidence reflection coefficient between air and aluminum/CFRP is greater than 99%. Kautz, 

however, observes that the coda wave decay rate is affected by volumetric scattering caused by 

porosity [Kautz 1993]. Weaver likewise noticed that the decay rate is sensitive to surface finishes 

[Weaver 1987]. Spatial averaging of decay rates was not examined for either of these observations, 

which could potentially account for the variations observed. 

 For homogeneous, isotropic materials, the decay rate of a coda wave should be constant 

and independent of spatial location. The process of calculating the decay rate is very similar to the 

diffusion fitting proposed by Anugonda et al. (2001) where the main difference is that Weaver 
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excludes early time signal components which eliminates the characteristic diffusion shape and 

allows for an exponential fit. Diffusion fit parameters were found to vary with spatial location 

[Deroo et al. 2010], therefore, it is likely that the decay rate also varies, at least to some degree, 

with spatial location. 

 Coda wave decay rate measurements made on an aluminum (Al 6061-T6511) sample 

(Figure 4-1c) were compared with published data [Weaver 1987]. Weaver used a 1.2x1.2x7.5 cm 

volume of aluminum (Al 6061-T651) and pinducers to transmit and receiver with a similar 

experimental configuration to the one used here. The respective waveforms and data are shown in 

Figure 5-19. The data resulting from using the same number of temporal and spectral windows as 

Weaver yields an average decay rate that is an order of magnitude larger than the average value 

reported by Weaver (1.75 and 0.17 respectively). It is unlikely that this difference results from the 

use of 12.7 mm 1 MHz longitudinal transducers instead of pinducers. Indeed, the waveforms are 

an order of magnitude different in time, yet the power spectral densities for the windows agree to 

within 10%. The waveform provided by Weaver is also an order of magnitude longer than 

waveforms published elsewhere for the same material [Michaels & Michaels 2005].  Figure 5-19 

also shows the envelope as calculate using the frequency window method. Both Weavers decay 

rate (0.17) and the one calculated here (1.75) fit the data equally well, showing the validity of the 

values. The power spectrum data matching also validates our calculations. 

 The discrepancies between the data presented by Weaver (1997) on one side and this thesis 

and Michaels & Michaels (2004) on the other can be resolved by one of two explanations. The 

more likely explanation is that the Coda Wave decay rate is proportional to the ratio of the volume 

to surface area. Thus coda waves should be considered as “leaky” waves in a similar manner to 

Lamb waves [Dayal & Kinra 1988, 1991]. The less likely explanation is that the sampling 
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frequency reported by Weaver is an order of magnitude smaller than the actual sampling frequency 

used. This can be demonstrated by scaling the waveform presented here to match the length of 

Weaver’s. The decay rates then agree to within 30% error. This can be further improved to 1% 

error is the waveform is scaled by a factor of 10.5 instead of 15, which is conceivable since no 

very little information is proved by Weaver on the conditions for his collection window. This topic 

of differing decay rates for the same material warrants further investigation. 

 The calculated decay rates for the transversely isotropic, isotropic, and quasi-isotropic 

plates are shown in Figure 5-20, Figure 5-21, and Figure 5-22 respectively. Each collection point 

for all materials yields the same basic decay curve, which is similar to the diffusion envelope 

shown above. The largest decay rate is observed for the unidirectional CFRP plate at an orientation 

of 0˚, which is expected since the 0˚ signals have significant high frequency energy that quickly 

dies off with time while the signals are comprised of low frequency energy that dies off slowly. 

The results close to 0 MHz are questionable since the decay rate drops close to zero. Weaver 

postulates that this is due to the problematic validity of diffuse fields (coda waves) at low 

frequencies [Weaver 1987]. 

 Decay rates are expected to be insensitive with orientation for the isotropic and quasi-

isotropic materials since the absorption of ultrasound is a material property. The orientation angle, 

however, affects the decay rate for all samples and all components, at least to some extent. The 

quasi-isotropic material exhibits the least sensitivity to orientation while the isotropic plate shows 

sensitivity in only a few cases. The unidirectional plate is more interesting. The decay rate is fairly 

uniform with orientation for small separations, but as the separation increases, the decay rate 

quickly drops with increasing orientation angle. If the decay rate was truly just a measure of the 

absorption of ultrasound, then the decay rate should be insensitive to the transducer separation for 
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(a2) (b2) 

  

 

 

(a3)  

Figure 5-19. Comparison of (a) coda wave decay rate for Al 6061-T6511 with (b) results 

published by Weaver, [Weaver 1987] with permission of Springer 12”. 1) waveform used, 2) 

results obtained using the same number of windows as Weaver, and 3) results obtained using the 

same number of windows and scaling the time to match Weaver’s. In (a) and (b) the decay 

curves shown for Weaver’s (0.17)  and current (1.75) decay rates. 

                                                 
12 Original title of Figure 5-19b1 is: ”Figure 2: A typical captured waveform-8192 microseconds of data are captured 
starting at a time shortly after, not at, the time of the main bang, in order to assure the presence of a fully 

developed diffuse field. The signal is artificially broken into successive time windows of width t = 512 
microseconds and then Fourier transformed window by window.” 
Original title of Figure 5-19b2 is: “Figure 5: The absorption rates after vigorously cleaning the machined specimen 
(o’s) and after polishing the machined surface (x’s). Compare with Figure 4 and note that the cleaning and 
polishing seems to remove most, but not all, of the machining induced changes.” 
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isotropic materials and ideally diffuse waves in a finite volume. The results from the isotropic plate 

contradict this since they exhibit the most dramatic variations in decay rate with increasing 

transducer separation. This discrepancy can be readily explained by considering the decreasing 

peak amplitude with separation combined with the consistently high amplitude low frequency 

content the cause the coda wave to appear to decay more slowly. 

 

  
(a) (b) 

  

  
(c) (d) 

Figure 5-20. Coda wave decay rates at different transducer pair orientations for a 0.9 cm 

unidirectional CFRP plate. The upper plot compares transducer separation for each angle while 

the lower plot compares the orientation angle for each separation. Signal was transmitted with a 

1.25 cm, 1 MHz longitudinal transducer and received with a) 1 MHz L, b) 1MHz S0, c) 1MHz 

S90, and d) pinducer transducers. 
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(c) (d) 

Figure 5-21. Coda wave decay rates at different transducer pair orientations for a 0.9 cm 

plexiglas plate. The upper plot compares transducer separation for each angle while the lower 

plot compares the orientation angle for each separation. Signal was transmitted with a 1.25 cm, 1 

MHz longitudinal transducer and received with a) 1 MHz L, b) 1MHz S0, c) 1MHz S90, and d) 

pinducer transducers. 

 

 



www.manaraa.com

135 

 

 

 

  
(a) (b) 

  

  
(c) (d) 

Figure 5-22. Coda wave decay rates at different transducer pair orientations for a 0.9 cm quasi-

isotropic CFRP plate. The upper plot compares transducer separation for each angle while the 

lower plot compares the orientation angle for each separation. Signal was transmitted with a 1.25 

cm, 1 MHz longitudinal transducer and received with a) 1 MHz L, b) 1MHz S0, c) 1MHz S90, 

and d) pinducer transducers. 

 

5.5 Conclusions 

 Coda measurements were shown to be repeatable, reciprocal, and reproducible. This 

indicates that coda wave NDE has the potential for sensitive measurements for the detection of 

damage. The measurements presented in this thesis were performed under controlled laboratory 

conditions: the transducers were semi-permanently attached during each data collection stage and 

the data was collected quickly so that the ambient room temperature in the lab varied by less than 
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0.1 ˚C. Measurements were made with decoupled and recoupled receivers to examine the 

variability introduced by the changing coupling conditions. The repeatability of the coda wave 

parameters was an order of magnitude lower when decoupling and recoupling the transducers. 

 Coda wave propagation and attenuation were also examined. It was found that the time of 

first arrival of the coda wave occurred between the arrival time of a ballistic longitudinal mode 

and a ballistic shear mode. This corresponds either to a S0 Lamb wave mode or a reflected 

longitudinal wave. Extracting Lamb wave modes was examined and found to inapplicable as the 

wave modes are not separable in either the time or frequency domains. Based on the first arrival 

times, the coda waves have an elliptical to barbell shaped spreading function. This indicates a 

propagating wave mode. In fact, the diffusion equation was fit to the coda waves with good 

agreement for aluminum, polycarbonate, and quasi-isotropic CFRP plates. The arrival times of the 

peak amplitude does not exhibit an elliptical/barbell spreading function which contradicts the 

propagating wave mode assumption. This is expected since the coda wave is a superposition field 

and not a wave mode. 

 Several attenuation measures were applied to the coda waves collected. The attenuations 

did not behave as would be expected for a propagating wave mode (i.e. well described by a 

decreasing exponential fit). This further indicates that traditional ultrasonic NDE measurements 

are not applicable in a coda wave analysis. One of the best measures of coda wave attenuation 

examined was the attenuation of signal energy with time (i.e. coda wave decay rate) as the 

definition is not dependent on the propagation of a specific wave mode. As expected, the isotropic 

materials exhibit circular attenuation function while the uni-directional CFRP plate exhibits an 

angular dependence. It is noted, however, that the size of the plate and reflecting vs. absorbing 

plate edges can dramatically affect the decay rate. 
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CHAPTER 6. QUANTITATIVE DETECTION OF DRILLED 

THROUGH HOLES 

 

This chapter presents a quantitative examination of damage in fibrous composite materials 

using diffuse field differential features. A general introduction and summary fo the work 

performed is given in Section 6.1. The repeatability of measurements is presented and discussed 

in Section 6.2. Next, the validation of the experimental configuration and calculations is examined 

in Section 6.3. Immediately following, in Section 6.4, all of the results for the detection and 

quantification of drilled holes are presented, analyzed, and discussed. Afterwards, the effect of 

several system parameters on the detection of drilled holes is examined in Section 6.5. Finally, 

Section 6.6 summarizes the work and conclusions presented in this chapter. 

 

6.1 Introduction 

 Drilled through-holes ranging in size from 0.397 mm (1/64”) to 7.94 mm (20/64”) were 

introduced to CFRP, aluminum, and polycarbonate samples. The smallest available mechanical 

drill sizes were used to simulate damage. It is understood that a micro-crack is even smaller than 

this, but since this size is nearest to a micro-crack, the damage is simulated with these drill bits. 

Larger damage sizes are also employed in order to examine the overall behavior of the features 

over a large range of damage. Basis functions are fit to the experimental data to determine the 

underlying behavior of the features and what aspect of the increasing damage produces a change 

in the differential features. A dimensional analysis of the differential features was performed to 

derive functions capable of accurately describing the behavior of two of the five features in order 

to allow for quantitative defect sizing based on 95% confidence bounds. Several types of drilled 
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holes were examined to demonstrate the sensitivity of the differential features to the effective 

defect volume as predicted by the derived functions. The derived functions were then fit to the 

experimental data and results are presented. Several regions of differing behavior for the 

differential features, which correspond to changing scattering regimes, were observed and are 

examined. This chapter also presents a discussion of diffuse field repeatability and the effects of 

system parameters such as input power and pulser-receiver damping of the behavior of differential 

features. 

 

 

6.2 Repeatability 

 Repeatability of the signal and damage detection capability is one of the fundamental 

aspects of ultrasonic testing. An NDE technique must be both repeatable and reproducible in order 

to be viable for implementation. The sensitivity of coda wave parameters such as energy and decay 

rate to experimental conditions such as coupling and temperature has been previously discussed 

[Mazzeranghi & Vangi 1999, Gyekenyesi et al. 2002]. These studies concluded that several coda 

wave parameters are sensitive to damage but that experimental conditions can mask damage and 

impair repeatability. Here the repeatability of the coda wave differential features is analyzed for 

the first time by collecting five signals before damage and five signals after each damage 

increment, which are termed “baseline” and “measured” signals respectively. All signals were 

collected with the transducers semi-permanently attached to the specimen so that coupling 

variability was minimized. A round-robin comparison of the five baselines to the five measured 

signals yields 25 distinct measurements for each damage increment. The set of baseline 

measurements is constructed by comparing the five baseline signals with themselves, which ideally 
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would all be zero. As discussed previously (sect. 4.3), the distribution mean is taken as the 

measurement and the standard deviation is taken as the measurement error. 

 Figure 6-1a shows the baseline and several damage increment distributions of repeated 

measurements of the temporal residual energy differential signal feature collected from a quasi-

isotropic CFRP sample (50x150x6mm). Generally, the standard deviation of each distribution is 

an order of magnitude smaller than the distribution means. The high quality factor (Q, peak 

amplitude over the half amplitude width), or the sharpness, of the baseline distribution indicates 

that the waveforms themselves are very repeatable while the high Q values of the damage  

  

(a) (b) 

Figure 6-1. Normalized probability density function of repeated measurements for the residual 

temporal energy differential feature for a) several different hole diameters and b) the repeated 

baseline signals. The baseline in a) is indicated by the black outline.  

 

distributions indicate that differences in the coda waveform measured by the differential features 

are also very repeatable. This indicates that the observed changes in the coda waveforms are in 

fact due to the presence of damage since the distributions do not overlap and the only difference 

between the subsequent collections is the introduced damage. Also noteworthy is the fact that the 

distributions remain distinct (non-overlapping), which means that the damage increments can be 

easily distinguished from each other. 
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 Figure 6-1b shows an enlarged version of the baseline (highlighted with a black outline in 

Figure 6-1a) showing the standard deviation and offset. Ideally when comparing multiple baseline 

signals, the mean value of the differential feature distribution is zero with a standard deviation of 

zero since there is no change in the sample, environment, or measurement configuration. Small 

changes in the waveforms due to random noise will increase the spread of the baseline 

measurements (and hence measurement error) and will cause a shift in the distribution mean, which 

indicates that both of these quantities are measures of noise. Measurement systems often need to 

be calibrated due to a constant offset in the measurements. In a similar manner, the offset of the 

baseline distribution can be considered as a calibration constant since the mean value should be 

zero. It is subsequently shown (Sec. 5.7.4) this offset is a noise dependent quantity that can 

generally be removed from the measurements. 

 A comparison of the baseline distribution means and standard deviations is given in Table 

6-1 for the five differential features extracted from repeated baseline signals collected for 

aluminum, polycarbonate, and quasi-isotropic CFRP samples (specimen #1). Note that all baseline 

measurements have an offset with the largest offsets measured for the differential curve length 

feature and for the aluminum sample in general. The aluminum offset is not unexpected as the 

coda waveform collected from aluminum contains more energy than the waveforms from 

polycarbonate or CFRP. Small variations in the aluminum waveforms will therefore result in larger 

values for the differential signal features. This is confirmed when detecting the same damage in 

the three materials. 
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Table 6-1a. Repeatability of coda wave baseline measurements of 50x150x0.6 mm plates using 12.7 mm longitudinal 

transducers (2.25 Mhz for Al and 1.0 Mhz for Poly and CFRP). 

  
Residual Temporal Energy 

Residual Spectral 

Energy 
Loss of Coherence 

    Q %)   Q %)   Q %)

Al 
100% 7.9e-3 4.8e-3 88 60.76 5.6e-3 3.8e-3 111 67.86 1.5e-2 5.2e-3 82 34.67 

50% 5.5e-3 1.0e-3 424 18.18 6.5e-3 2.0e-3 212 30.77 2.0e-2 3.4e-3 125 17.00 

Poly 
100% 2.1e-4 1.5e-4 2831 71.43 6.2e-4 5.5e-4 772 88.71 1.3-3 1.1e-3 386 84.62 

50% 1.8e-4 9.3e-5 4566 51.67 4.6e-4 3.6e-4 1180 78.26 7.8e-4 2.9e-4 1464 37.18 

CFRP 
100% 3.5e-4 2.9e-4 1464 82.86 2.0e-4 1.2e-4 3539 60.00 3.4e-3 2.2e-3 193 64.71 

50% 2.1e-4 1.5e-4 2831 71.43 5.7e-4 5.9e-4 720 103.51 1.3e-2 1.3e-2 33 100.00 

 = mean 

 = standard deviation 

Q = quality factor 

 

 

Table 6-2b. Repeatability of coda wave baseline measurements of 50x150x0.6 mm plates 

using 12.7 mm longitudinal transducers (2.25 Mhz for Al and 1.0 Mhz for Poly and CFRP). 

  Loss of Correlation Differential Curve Length 

    Q %)   Q %)

Al 
100% 1.1e-3 2.8e-3 152 254.55 0.93 0.16 3 17.20 

50% 7.1e-4 1.0e-3 425 135.14 1.3 0.12 4 9.23 

Poly 
100% 3.1e-6 5.2e-5 8167 1677.40 8.3e-2 1.0e-2 43 12.05 

50% 6.0e-7 4.1e-5 1036 6833.30 0.14 1.0e-2 43 7.14 

CFRP 
100% 1.4e-5 2.2e-4 1930 1571.40 5.5e-2 1.6e-3 265 2.91 

50% 6.1e-6 4.7e-5 9035 770.49 9.6e-2 1.6e-2 27 16.67 

 = mean 

 = standard deviation 

Q = quality factor 
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6.3 Experimental Validation 

 Three of the differential features obtained for aluminum (residual temporal energy, residual 

spectral energy, and loss of coherence) in this study were compared with the published 

experimental data of specimen #1 from Michaels & Michaels (2005). Published experimental data 

for loss of correlation and differential curve length are not available. The two data sets are plotted 

together in Figure 6-2. 

 The data sets are in good agreement for all features for hole diameters between 1.98 and 

4.76 mm. A quantitative comparison of the two data sets can be performed using the relative mean 

squared error (RMSE), which is the square of the relative L2-norm. The percent error between the 

two data sets is 5.56%, 1.82%, and 2.28% for the temporal residual energy, the spectral residual 

energy, and the loss of coherence respectively. This demonstrates the reproducibility of the coda 

wave differential features in the presence of damage. In the data presented by Michaels & Michaels 

(2005), a plateau starts with the 5.56 mm hole while the data presented here continues to rise. 

Michaels & Michaels (2005) do not discuss the error in their measurements nor is any attempt 

made to explain the cause of the plateaus in the data. 

 Several noteworthy differences exist between the two experimental configurations: 

Michaels & Michaels (2005) use 12.7 mm 2.25 MHz piezo discs, an 8-bit oscilloscope, and 

digitizes the received signals at 12.5 MHz while this study uses 12.7mm 2.25 MHz longitudinal 

transducers, a 12-bit oscilloscope, and digitizes the received signals at 50 MHz. Both the data bit 

depth and sampling frequency can be reduced during post-processing to replicate Michaels’ 

parameters and determine whether these may have influenced the data processing and created the 

plateaus in Michaels’ data. Reducing the bit depth and sampling frequency did not affect our data 

and thus did not cause the plateaus. Several aluminum samples were also examined in order to try  



www.manaraa.com

143 

 

 

 

 

Figure 6-2. Comparison of three differential signal features (Residual Temporal Energy (Temp), 

Residual Spectral Energy (Spec), and Loss of Coherence (LoCoh)) from this study with those 

from Michaels and Michaels 2005. 

 

 

to recreate the plateaus observed in Michaels’ data, but the plateaus were unable to be recreated. 

Therefore, as a pure conjecture the plateaus are due to a parameter of the experimental 

configuration used by Michaels & Michaels. 

 

6.3.1 Reciprocity of Damage Detection 

 The reciprocity of coda waveforms was presented and discussed previously (Section 4.4.3) 

where it was shown that variation in reciprocal waveforms is an order of magnitude larger than the 

variation in repeated waveforms and an order of magnitude smaller than the variation caused by 

the introduction of a 0.8 mm drilled through-hole. Such reciprocity is required by conservation 

principles. Here the reciprocity of damage detection via coda wave differential features is 

examined to demonstrate that coda waves are more than just noise and do carry damage 

information. Coda wave signals were collected from an aluminum sample (50x150x6 mm) where 
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the transmission from transducer #1 to transducer #2 shall be referred to as the “forward” signal 

and the transmission from transducer #2 to transducer #1 shall be referred to as the “backward” 

signal. Note that although the sample under examination has the transducers aligned along one line 

of symmetry the drilled through-hole is not symmetric with regard to the plate or transducers. This 

is significant since breaks in problem symmetry can break reciprocity. 

 Five forward and five backward signals were collected for each damage step and the five 

differential signal features were calculated. Figure 6-3 shows the resulting differential feature 

amplitudes which are nearly identical for the forward and backward signals over a range of 

through-hole diameters. Generally, the two data sets fall within 1 measurement error of each other, 

with the exception of the differential curve length (DCL). Percent RMSE was calculated for each 

of the five features to provide a quantitative comparison (Table 6-3). The spectral residual energy 

(Espec) feature was the most similar, RMSE = 0.0125%, while the differential curve length (DCL) 

feature was the least similar, RMSE = 1.16%. This demonstrates the remarkable reciprocity of coda 

wave differential features in the presence of damage, further proves that coda waves do carry 

damage/defect information, and indicates the repeatability and reproducibility of this technique. 

 

 

Figure 6-3. Example of the reciprocity of five differential features. Repeated signals were 

collected in both the forward and backwards directions in the presence of damage. 
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Table 6-3. Percent Relative Mean Squared Error quantifying the 

similarity of differential features for forward and backward 

propagating coda waves in the presence of damage. 

Etemp Espec LoCoh LoCor DCL 

0.68 1.25E-2 1.53E-2 0.73 1.16 

 

 

6.4 Results 

 Collected waveforms were analyzed using the five methods previously described: residual 

temporal energy, residual spectral energy, loss of coherence, loss of correlation, and differential 

curve length. For each specimen, a set common baseline signals was used for all five methods. The 

baselines correspond to a simply supported, pristine sample at room temperature13 (21.2 ˚C ± 2.1). 

The 10-1010 s time windows considered for feature extraction were identical across all specimens 

and methods and were selected to replicate the work by Michaels & Michaels (2005). Increasing 

the window length to encompass the full 2000 s of recorded data did not affect the results. All 

spectrograms were calculated for the entire 10-1010 s time window and a frequency window 

from 0 to 3.5 MHz: again the window was chosen to replicate the work of Michaels & Michaels 

(2005). This frequency range does encompass more than 99% of the spectral energy for all signals. 

Center frequencies were approximately 200, 50, and 40 kHz for aluminum, CFRP, and 

polycarbonate samples respectively, but significant energy was present up to 3.5, 1, and 0.75 MHz 

respectively. 

                                                 
13 See footnote 11, pg. 107. 
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6.4.1 Differential Features 

 The range of hole diameters was extended from 1.98-6.35 mm (used by Michaels & 

Michaels (2005)) to 0.397-7.94 mm to examine the detection limits and resolution of differential 

signal features. Differential feature extraction is also extended to fibrous composite and polymeric 

materials to determine the applicability and limits of this technique. The resulting differential 

features are plotted in Figure 6-4 & Figure 6-5 where the abscissa is the hole diameter and the 

ordinate is the feature amplitude for each damage stage. Secondary and tertiary abscissa are given 

in Figure 6-4 indicating the ratio of the hole diameter to the longitudinal and shear wavelength at 

1 MHz respectively. For all cases, the features are well correlated to defect size and show promise 

for future defect characterization. With only a few exceptions, the parameters are generally 

increasing with defect size, which demonstrates their effectiveness in detecting and discriminating 

defects. Figure 6-4 shows plots of the five differential features for each of the three specimens. All 

parameters easily detect the 0.397 mm hole for CFRP and polycarbonate and the 0.794 mm hole 

for aluminum. The diameter increase of 0.397 mm is easily resolvable in most of the cases with 

the arguable exception of features with large error bars. The deviation in repeatability for the 

features in polycarbonate and differential curve length in CFRP and aluminum signifies that the 

0.397 mm resolution is not achievable with a single measurement in these cases. The resolution is 

achievable in these plots with five repeated measurements. Note that the error bars in the figure 

encompass 99.7 percent of the measurements. 

 Spectral residual energy is the most sensitive to defects across the three specimens, though 

loss of coherence is also observed to be quite sensitive. Differential curve length and loss of 

correlation are the least sensitive to defects, though perform well when normalized, as shown 

below. Differential curve length also has consistently large repeatability error for all specimens. 
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The combination of low sensitivity and low repeatability indicates this feature should not be used 

for this type of defect. Kinks in the otherwise monotonically increasing data are observable in all 

features for CFRP and polycarbonate. The CFRP data below 2 mm increases linearly, then drops 

in amplitude and continues to increase quadratically. This change in behavior occurs during the 

transition from Rayleigh to intermediate scattering regimes. The polycarbonate data exhibits a 

substantial reduction of amplitude for all features at 6 mm. It is interesting to note that even though 

Perseval’s theorem suggests that the temporal and spectral energy should be equivalent, only the 

polycarbonate exhibits equivalent energy. 

 Figure 6-5 shows the comparison of each feature’s behavior in the three specimens. The 

CFRP and polycarbonate features have similar amplitudes that are typically one fourth the 

amplitudes in aluminum. This is due to the similarities in the received waveforms for CFRP and 

polycarbonate. The aluminum waveform has spectral content at higher frequencies and a longer 

“ring-down” period. This allows for an increased sensitivity to minute changes and thus a larger 

differential feature amplitude. The most likely cause of the waveform shape differences between 

aluminum and CFRP/polycarbonate is the elastic vs. visco-elastic wave propagation. Also 

noteworthy is that the ‘S’ shaped curvature in the aluminum loss of coherence is also present in 

both the CFRP and polycarbonate samples, though at later times. This suggests the parameter ‘loss 

of coherence’ asymptotically approaches 0.5 at very large defects. Such behavior is expected since 

the temporal coherence of uncorrelated white noise is approximately 0.5. 
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Aluminium CFRP 

  
(a) (b) 

  

Polycarbonate 

 
(c) 

Figure 6-4. Increase in the amplitude of the five differential signal features with increasing hole 

diameter for (a) aluminum, (b) CFRP, and (c) polycarbonate. The signals are transmitted and 

received with a pair of 12.5mm longitudinal transducers (2.25 MHz for aluminum and 1 MHz for 

CFRP and polycarbonate) excited with a spike pulse. 
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Temporal Residual Energy Spectral Residual Energy 

  
(a) (b) 

  

Loss of Coherence Loss of Correlation 

  
(c) (d) 

  

Differential Curve Length 

 
(e) 

Figure 6-5. Comparison of differential signal features (a) residual temporal energy, (b) residual 

spectral energy, (c) loss of coherence, (d) loss of correlation, and (e) differential curve length 

extracted from the three materials considered in this study. The signals are transmitted and 

received with a pair of 12.5mm longitudinal transducers (2.25 MHz for aluminum and 1 MHz for 

CFRP and polycarbonate) excited with a spike pulse. 
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 This work demonstrated that a 0.397 mm increase in the diameter of through-thickness 

holes is resolvable with differential signal features. To further examine the resolvability of small 

scale changes in damage the work is extended to include two additional damage types: single 

partial/full through hole (Figure 4-2b & Figure 4-3) and multiple through-holes of constant 

diameter (Figure 4-2c). The resulting differential features are plotted in Figure 6-6 - Figure 6-7 

where the abscissa is the effective hole diameter and the ordinate is the feature amplitude for each 

damage stage. For all cases, the features are well correlated to defect size. With only a few 

exceptions, the parameters are monotonic with defect size, which demonstrates their effectiveness 

in detecting and discriminating defects. 

 Figure 6-6 shows plots of residual temporal and spectral energy for the half/full hole 

(specimen #2) CFRP and polycarbonate samples. The other three differential features show similar 

behavior. All parameters easily detect the 1.59 mm diameter half-hole in both materials and can 

differentiate between half-holes and full-holes. Both the increase in diameter and hole depth are 

resolvable and distinguishable from each other in most cases with the best performance occurring 

for residual spectral energy from the polycarbonate sample. Residual spectral energy generally 

performs better than the other features and features in polycarbonate generally perform better than 

those for CFRP as the features in CFRP have difficulty distinguishing between half and full holes 

when the diameter is greater than 3 mm. Deviations from the observed trends for through-holes 

and the inability to distinguish hole depth in certain cases is caused in part by the increased 

scattering from the sharp edges of the half hole. 
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Figure 6-6. Increase in the amplitude of (1) the residual temporal energy and (2) residual 

spectral energy with increasing damage size for (a) CFRP and (b) polycarbonate specimen #2. 

The signals are transmitted and received with a pair of 12.5mm 1 MHz longitudinal transducers) 

excited with a spike pulse. 

 

  
(a) (b) 

Figure 6-7. Increase in the amplitude of the five differential features with increasing damage 

volume for (a) CFRP and (b) polycarbonate specimen #2. The signals are transmitted and 

received with a pair of 12.5mm 1 MHz longitudinal transducers) excited with a spike pulse. 
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 The dependence of the feature amplitude on both hole diameter and depth suggests that 

changing the abscissa to defect volume would be useful. A comparison of the five differential 

features for both CFRP and polycarbonate samples is shown in Figure 6-7. Spectral residual energy 

is the most sensitive to defects for the two specimens. Differential curve length and loss of 

coherence are the least sensitive to defects, though perform well when normalized. Differential 

curve length also has consistently large repeatability error for all specimens. The combination of 

low sensitivity and low repeatability indicates this feature should not be used for this type of defect. 

The poorer repeatability for the features in polycarbonate and differential curve length in CFRP 

signifies that the desired resolution is not achievable with a single measurement in these cases. 

The resolution is achievable in these plots with five repeated measurements. Note that the error 

bars in the figure encompass 99.7 % of the measurements. 

 Figure 6-8 shows plots of residual temporal and spectral energy for the multiple through-

hole (specimen #3) CFRP and polycarbonate samples. The other three differential features show 

similar behavior. All parameters easily detect the first through-hole and can resolve subsequent 

0.397 mm through-holes with a linear dependence. All features, save residual spectral energy, 

begin to plateau for the fifth hole, which indicates that the second hole partially masks the fifth 

hole. Contrary to the results from the other two specimen sets, differential curve length shows the 

highest sensitivity to defects, followed by temporal residual energy. This set of specimens 

represents the smallest increase in damage volume and shows off the resolution and detection 

capabilities of coda wave differential features. The diameter of these drilled holes is approximately 

three times the width of a micro-crack, which is likely detectable and countable with coda wave 

differential features. 
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Figure 6-8. Increase in the amplitude of (1) the residual temporal energy and (2) residual 

spectral energy with increasing damage size for (a) CFRP and (b) polycarbonate specimen #3. 

The signals are transmitted and received with a pair of 12.5mm 1 MHz longitudinal transducers) 

excited with a spike pulse. 

 

6.4.2 Normalized Differential Features 

 The differential signal features were normalized to allow for comparison of the features for 

each material and between materials. Features were normalized so that the feature amplitude 

corresponding to the 4.76 mm hole is unity for each specimen. The 4.76 mm diameter hole was 

chosen because it is the largest hole diameter before the data from Michaels & Michaels (2005) 

plateaus, and allows for the best comparison. 

 Figure 6-9 plots the normalized features for each specimen: (a) aluminum data from 

Michaels and Michaels, (b) aluminum, (c) CFRP, and (d) polycarbonate. Again, secondary and 
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tertiary abscissa are given indicating the ratio of the hole diameter to the longitudinal and shear 

wavelength at 1 MHz respectively. Although the features follow the same general trend for each 

specimen, they tend to diverge around the 5.5 mm hole. This is most apparent for CFRP. The 

features also express the same structures in each specimen that deviate from the trend: the plateau 

for large hole diameters in Michaels’ aluminum, the kink for small hole diameters in CFRP, and 

the abrupt drop in amplitude at the 5.5 mm hole in polycarbonate. This is indicative of a physical 

phenomenon such as a transition in the scattering regime or of intrinsic system behavior such as 

non-linearity. 

 The features are well correlated (CC > 0.95) for aluminum, polycarbonate, and Michaels’ 

aluminum. This indicates that the features for each of these materials are governed by the same 

function with different scaling and that they give similar information about the material and 

defects. The feature divergence for these specimens is largely due to the increasing dissimilarity 

between the baseline and measured signals, which affects each feature differently, but also 

corresponds to the transition from Rayleigh to intermediate scattering regimes for the coda wave 

center frequency. The features in CFRP are more complex with three distinct regions: linear region 

below 2 mm, quadratic region 2-5.5 mm, and divergent region above 5.5 mm. These regions 

roughly correspond to the Rayleigh, intermediate, and specular scattering regimes respectively. 

Initially the features in CFRP are well correlated (CC > 0.98), but diverge significantly after the 

4.76 mm hole. The feature divergence is largely due to the features tracking different physical 

phenomena as they follow different basis functions. 

 Comparison of each differential feature across materials is shown in Figure 6-10. All five 

features are well correlated between the CFRP and polycarbonate samples, due in part to the 

divergence of the features in polycarbonate. The features in aluminum differ considerably from 
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the CFRP and polycarbonate features, save for differential curve length. These results are 

significant because they indicate the physical processes affecting the coda wave are similar for 

CFRP and polycarbonate but different for aluminum where the main difference between 

CFRP/polycarbonate and aluminum is visco-elastic vs. elastic propagation. 

 

 

 

 
(a) (b) 

  

  
(c) (d) 

Figure 6-9. Normalized amplitude for the differential signal features with increasing hole 

diameter for (a) Michaels and Michaels 2005, (b) aluminum, (c) CFRP, and (d) polycarbonate. 

Amplitudes were normalized so that the amplitude corresponding to the 4.76 mm hole is unity. 

The signals are transmitted and received with a pair of 12.5mm longitudinal transducers (2.25 

MHz for aluminum and 1 MHz for CFRP and polycarbonate) excited with a spike pulse. 
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Temporal Residual Energy Spectral Residual Energy 

  
(a) (b) 

  

Loss of Coherence Loss of Correlation 

  
(c) (d) 

  

Differential Curve Length 

 
(e) 

Figure 6-10. Comparison of normalized differential signal features (a) residual temporal energy, 

(b) residual spectral energy, (c) loss of coherence, (d) loss of correlation, and (e) differential 

curve length for the three materials considered in this study and the data from Michaels and 

Michaels 2005. Amplitudes are normalized so that the amplitude corresponding to the 4.76 mm 

hole is unity. The signals are transmitted and received with a pair of 12.5mm longitudinal 

transducers (2.25 MHz for aluminum and 1 MHz for CFRP and polycarbonate) excited with a 

spike pulse. 
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6.4.3 Trend lines of Differential Features 

 Four of the five differential features increase monotonically, between the first and second 

kinks, with increasing hole diameter for all three samples. Thus, future defect sizing can be 

achieved by fitting a physical model to the current data. Constant coefficients were eliminated by 

normalizing the features to themselves, which allows for the determination of the basis function. 

The initial best fit of the differential features is an arbitrary third order polynomial determined by 

weighted least squares. This indicates that the features are volume (or length3) dependent while 

the coefficients are material dependent. An appropriate volumetric dependence is the hole volume 

since it increases with hole diameter. Normalizing the hole volume in a similar manner to the 

deferential features yields a d2 (where d is the hole diameter) function since the plate thickness is 

constant. Two other basis functions, d3 and d, are selected based on Rayleigh and Stocastic 

scattering regimes respectively since most of the features are proportional to scattering loss. 

 Figure 6-11 shows plots of normalized differential features and normalized basis functions 

for aluminum, CFRP, and polycarbonate. The adjusted coefficient of determination, 𝑅2, of the 

basis functions are listed in Table 6-4 Differential features extracted from the aluminum sample 

are best described by the linear basis function with 𝑅2 > 0.95. Loss of coherence begins to plateau 

around the 5.57 mm diameter hole. For CFRP, the residual energies and loss of correlation are best 

described by the quadratic basis function with 𝑅2 > 0.97, while differential curve length fits the 

linear function and loss of coherence fits the cubic function. All features are well described by the 

basis functions for hole diameters between 2.38 and 6.35 mm. In a similar manner to the aluminum 

sample, loss of coherence begins to plateau around the 6.35 mm hole. All features extracted from 

the polycarbonate sample (including differential curve length) are well described by a quadratic 

basis function which has 𝑅2 > 0.94. It should be noted  
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Aluminium CFRP 

  
(a) (b) 

  

Polycarbonate 

 
(c) 

Figure 6-11. Normalized differential signal features for (a) aluminum, (b) CFRP, and (c) 

polycarbonate with normalized fitting curves (powers of hole diameter). Amplitudes are 

normalized so that the amplitude corresponding to the 4.76 mm hole is unity The signals are 

transmitted and received with a pair of 12.5mm longitudinal transducers (2.25 MHz for 

aluminum and 1 MHz for CFRP and polycarbonate) excited with a spike pulse. 

 

that the value of 𝑅2 is dependent on the choice of data point used for normalization and can vary 

up to 10%. The good fits of the basis function indicate the behavior of the non-normalized 

differential features may be describable with the appropriate material dependent coefficients. 

 When multiple features correspond to the same basis function, the features are measuring 

the same physical phenomenon. When a feature changes basis functions between materials, the 

phenomenon is different. Both aluminum and polycarbonate are isotropic materials but have 

differential features with linear and quadric basis functions respectively. Therefore, the cause of 
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the different basis functions must be due to difference in scattering between the materials. The 

aluminum has stochastic boundary scattering and internal grain scattering while polycarbonate has 

stochastic boundary scattering. CFRP is more complex than either aluminum of polycarbonate, 

both in terms of elastic properties/scattering and differential features. CFRP supports three distinct 

basis functions. This more complicated behavior is due to the many wave velocities that exist in 

CFRP in addition to the scattering from boundaries, fibers, and plies. Residual temporal energy, 

residual spectral energy, and loss of correlation are described by the quadratic basis function in 

both CFRP and polycarbonate, but are described by the linear basis function in aluminum. This 

indicates that these features are measuring a physical phenomenon that exists in polymers, but not 

in metals. It is clear that the underlying causes of the differences in the differential feature behavior 

are convoluted and will be difficult to determine without good models. 

 The behavior of the five differential features was noted elsewhere as being generally 

quadratic in nature with respect to hole diameter. It was also noted that several damage regions 

exist that seem to correspond to changing scattering regimes: the low damage region corresponds 

to Rayleigh scattering, has higher slope, and appears linear; the intermediate region corresponds 

to intermediate scattering, has medium slope, and appears quadratic; the large damage volume 

region corresponds to specular scattering, has low slope, and is characterized by deviating from 

the previous basis functions. 

 Figure 6-12 shows the five differential features for each of the three specimens and CFRP 

and polycarbonate materials. The feature amplitude is normalized such that the feature amplitude 

corresponding to the 4.4 mm hole (a & b) or the fourth 0.397 mm hole (c) is unity. The abscissa is 

normalized to relative defect volume to allow for comparison between the three damage types. 

Distinct damage regions are apparent for specimens #1 & #2. Similar feature behavior is observed 



www.manaraa.com

160 

 

 

 

between the half/full hole (specimen #2) CFRP and polycarbonate samples where loss of 

coherence follows cubic behavior, spectral residual energy follows quadratic behavior, and the 

other three features follow linear behavior. These basis functions deviate from those observed for 

specimen #1, though the deviation is less significant for polycarbonate. The deviation is caused in 

part by the sharp corners of the half holes that increase the amount of scattering. For specimen #3, 

temporal residual energy, loss of coherence, and loss of correlation tend towards quadratic 

behavior while spectral temporal energy and differential curve length tend towards linear behavior. 

 

Table 6-4. Adjusted Coefficient of determination (𝑅̅2) between differential 

features and fit lines. 

  D3 D2 D 

Residual Temporal 

Energy 

Al M 0.00 0.70 0.89 

Al 0.00 0.28 0.97 

CFRP 0.22 0.96 0.75 

Poly 0.00 0.89 0.83 

Residual Spectral 

Energy 

Al M 0.28 0.90 0.81 

Al 0.00 0.39 0.99 

CFRP 0.00 0.95 0.84 

Poly 0.61 0.99 0.70 

Loss of Coherence 

Al M 0.00 0.70 0.89 

Al 0.00 0.00 0.88 

CFRP 0.88 0.91 0.56 

Poly 0.61 0.97 0.68 

Loss of Correlation 

Al 0.00 0.47 0.96 

CFRP 0.28 0.96 0.74 

Poly 0.00 0.91 0.81 

Differential Curve 

Length 

Al 0.00 0.00 0.74 

CFRP 0.00 0.23 0.97 

Poly 0.00 0.77 0.87 

Al M = Data on aluminum from Michaels & Michaels 2005 
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Figure 6-12. Normalized Differential Signal Features with normalized fitting curves (powers of 

hole diameter) for (a) specimen #1, (b) specimen #2, and (c) specimen #3 with materials (1) 

CFRP and (2) polycarbonate. Amplitudes were normalized so that the amplitude corresponding 

to (a & b) the 4.4 mm or (c) the fourth 0.397 mm hole is unity. The abscissa was normalized to 

the defect volume over the plate volume. The signals were transmitted and received with a pair 

of 12.5mm 1MHz longitudinal transducers excited with a spike pulse. 
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Table 6-5. Adjusted coefficient of determination (𝑅̅2) between 

normalized differential features and fit lines. 

 Specimen Material hD3 hD2 hD 

R
es

id
u

a
l 

T
em

p
o

ra
l 

E
n

er
g

y
 

1 

Al 0.00 0.28 0.97 

CFRP 0.22 0.96 0.75 

Poly 0.00 0.89 0.83 

2 
CFRP 0.37 0.82 0.91 

Poly 0.51 0.87 0.85 

3 
CFRP 0.38 0.68 0.79 

Poly 0.86 0.84 0.48 

R
es

id
u

a
l 

S
p

ec
tr

a
l 

E
n

er
g

y
 

1 

Al 0.00 0.39 0.99 

CFRP 0.00 0.95 0.84 

Poly 0.61 0.99 0.70 

2 
CFRP 0.84 0.98 0.65 

Poly 0.91 0.98 0.52 

3 
CFRP 0.92 0.99 0.65 

Poly 0.95 0.89 0.44 

L
o

ss
 o

f 
C

o
h

er
e
n

ce
 

1 

Al 0.00 0.70 0.89 

CFRP 0.00 0.00 0.88 

Poly 0.88 0.91 0.56 

2 
CFRP 0.98 0.90 0.20 

Poly 0.99 0.88 0.11 

3 
CFRP 0.78 0.94 0.79 

Poly 0.87 0.81 0.42 

L
o

ss
 o

f 
C

o
rr

el
a

ti
o

n
 

1 

Al 0.00 0.47 0.96 

CFRP 0.28 0.96 0.74 

Poly 0.00 0.91 0.81 

2 
CFRP 0.40 0.83 0.90 

Poly 0.52 0.88 0.84 

3 
CFRP 0.38 0.68 0.79 

Poly 0.86 0.83 0.47 

D
if

fe
r
en

ti
a

l 
C

u
rv

e 

L
en

g
th

 

1 

Al 0.00 0.00 0.74 

CFRP 0.00 0.23 0.97 

Poly 0.00 0.77 0.87 

2 
CFRP 0.00 0.00 0.87 

Poly 0.00 0.37 0.91 

3 
CFRP 0.11 0.53 0.82 

Poly 0.86 0.91 0.62 
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6.4.4 Damage Regions 

 When examining the behavior of the differential features, three damage regions quickly 

become apparent. The feature amplitude for the first three holes has a significantly higher slope 

and higher amplitude than the subsequent holes. This indicates that a change in the underlying 

physics of the problem occurs in the transition between 1.19 and 1.98 mm. This transition in hole 

diameter also corresponds to the transition in scattering regimes (Figure 6-13), Rayleigh to 

intermediate, for the high frequency energy contained in the coda wave signals. The third damage 

region (the first being the small holes and the second being the intermediate holes) is evidenced 

by the deviation of the data points from the basis function fit lines (dashed lines) starting around 

5.95 mm (Figure 6-11). The transition between intermediate and specular scattering for the high 

frequency energy and the transition between Rayleigh and intermediate scattering for mid 

frequency energy occurs starting around 5.95 mm. 

 The feature amplitudes for the first few holes of the CFRP specimen #1 (Figure 6-13a) 

exhibit a significantly higher slope and higher amplitude than the subsequent holes. This is an 

indication that the differential features are more sensitive to small scale damage. These first few 

holes in specimen #1 are within the Rayleigh scattering regime; the holes in the CFRP specimen 

#3 are also within the Rayleigh scattering regime (Figure 6-13b). If the features are indeed more 

sensitive to small scale damage and are scattering dependent, then the feature amplitudes should 

increase linearly with increasing number of holes but not with increasing diameter. A comparison 

of the first few holes from specimen #1 and the holes from specimen #3 is provided in Figure 

6-13c. The feature amplitudes do increase linearly for specimen #3 (multiple holes) and with a 

larger slope than amplitudes for specimen #1 (single hole) which do not increase linearly. Note 

that the feature amplitudes for the first hole in both samples, which is nominally identical, agree 
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to within 1 measurement error. This unequivocally demonstrates that the differential features are 

more sensitive to small scale damage and are affected by the scattering regime of the damage. This 

also demonstrates that the number of damage sites can be distinguished from damage volume. 

 

 

  
(a) (b) 

  

 
(c) 

Figure 6-13. Comparison of the detection of drilled through-holes in a) sample 1 and b) sample 

2. A comparison of the single and multiple holes is presented in c). Three abscissa are shown in 

a) and b) which correspond to the hole diameter/number and the ratio of the hole diameter to the 

wavelength (1 MHz) for fast shear and fast longitudinal waves. 

 

 



www.manaraa.com

165 

 

 

 

 A distinct change can also be observed in the amplitudes and basis functions of the 

differential features for relative defect volumes less than 0.03% (1.59 mm hole) in aluminum and 

0.02% (1.19 mm hole) in CFRP and polycarbonate. This can also be observed in Figure 6-12. The 

slope of the features in the low damage volume region tends to be significantly larger than the 

subsequent slope, which gives a higher sensitivity to smaller defects. 

 Figure 6-14 shows the five differential features for the single through-hole (specimen #1) 

aluminum, CFRP, polycarbonate samples. In these plots, the feature amplitudes have been 

normalized such that the amplitude corresponding to the 1.59 mm (aluminum) or 1.19 mm (CFRP 

and polycarbonate) hole is unity. There is a distinct difference between the feature behavior in the 

two defect volume regions. Whereas the features generally exhibit quadratic behavior with respect 

to hole diameter, the features exhibit linear behavior in the low damage volume region. The 

difference in feature behavior corresponds to the transition from Rayleigh to intermediate 

scattering for the higher frequency energy of the coda signal (Figure 6-4, Figure 6-9). The 

increased sensitivity to small damage volumes presented here and confirmed by multiple drilled 

through-holes (specimen #3) indicates the potential for coda wave NDE to detect and possibly 

characterize micro-cracks in CFRP materials. 
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(a) (b) 

  

 
(c) 

Figure 6-14. Normalized Differential Signal Features with normalized fitting curves (powers of 

hole diameter) illustrating the damage region for small diameter holes for specimen #1 with 

materials (a) aluminum, (b) CFRP, and (c) polycarbonate. Amplitudes were normalized so that 

the amplitude corresponding to (a) the 1.59 mm or (b & c) the 1.19 mm hole is unity. The 

abscissa was normalized to the defect volume over the plate volume. The signals were 

transmitted and received with a pair of 12.5mm 1MHz longitudinal transducers excited with a 

spike pulse. 

 

 

6.4.5 Residual Energy Fit Equations 

 Dimensional analysis of the residual energy differential features yields an equation that is 

dependent on the damage volume (d2h), the impedance of the system (), and material properties 

(c2). The quadratic dependence of the residual energy features on the hole diameter was 

demonstrated previously, while the dependence on hole depth is demonstrated above. Even though 

the effect of the system electrical impedance on the differential features has been shown 

experimentally, it is not considered in the fit equations presented here. 
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 Figure 6-15 shows the experimental data, fit equations (black line), and the 95% confidence 

bounds (gray lines) [Bluman 2004] for the residual energy features for a single drilled through-

hole of increasing diameter (specimen #1) for both CFRP and polycarbonate materials. Error bars 

for the data are approximately the same size as the data points and are not shown. The data is well 

fit with adjusted coefficient of determination, 𝑅2, greater than 0.95 (Table 6-6). The best fits were 

achieved by using the longitudinal velocity for the temporal energy and the shear velocity for the 

spectral energy as follows: 

 𝐸𝑟𝑒𝑠−𝑡𝑒𝑚𝑝 = 𝜉1
𝜋

4
𝜈𝜌𝑐𝑙

2𝐷2ℎ (6.1) 

 𝐸𝑟𝑒𝑠−𝑠𝑝𝑒𝑐 = 𝜉2
2𝜋

4
𝜈2𝜌𝑐𝑠

2𝐷2ℎ (6.2) 

where  is Poisson’s ratio and  are material dependent constant coefficients. For Figure 6-15, 

 takes the values 1.6E-5 and 1.6 E -6 for CFRP and polycarbonate respectively while beta takes 

the values 1 E -4 and 4 E -4 respectively. It is important to note that CFRP is non-isotropic and that 

many wave velocities exist which depend on the direction of propagation. The maximum 

longitudinal velocity and corresponding  were used for the temporal energy while the minimum 

shear velocity and corresponding  were used for the spectral energy.  

 Residual spectral energy in polycarbonate provides the best performance in terms of defect 

sizing, with ± 0.5 mm accuracy, while providing the worst performance for CFRP, with ± 1 mm 

accuracy for larger holes. The quality of fit and defect sizing performance can be drastically 

improved if the data points for the first several drilled holes in CFRP and the outlier at 6 mm for 

polycarbonate are discounted. Over the diameter range of 2-6 mm, a sizing accuracy of ± 0.1 mm 

is achievable (Figure 6-15b). The experimental data, fit equations (black line), and the 95% 

confidence bounds (gray lines) for the residual energy features for multiple drilled through-
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holes(specimen #3) for both CFRP and polycarbonate materials is shown in Figure 6-16. Again, 

equations (6.1) & (6.2) were used to fit the data where  takes the values 1.6E-4 and 7.5E-5 for 

CFRP and polycarbonate respectively while  takes the values 1.5E-4 and 2E-4 respectively. The 

best sizing performance is observed in polycarbonate with an accuracy of ± 0.75 holes while the 

best achievable in CFRP is ± 1 hole. 

 As discussed in the previous section, three different regions of differential feature behavior 

are observable in the data sets. Furthermore, these regions correspond to different scattering 

regimes, and each scattering regime is governed by different physical relations. It is difficult to 

derive equations that accurately describe the behavior of a quantity in all three scattering regimes. 

The equations derived here are optimized for the central data region since that is the largest data 

set. Even though the residual energy equations are derived specifically for the central data region, 

which corresponds to intermediate scattering, they can still accurately describe the Rayleigh 

scattering regime as demonstrated by Figure 6-16. 

 These results are significant because they indicate that fairly accurate defect sizing can be 

performed in a material as complex as CFRP with an in-situ volumetric scan. More accurate 

detection and defect sizing can be achieved with immersion UT, but that is a point-by-point scan 

that requires significant time. Guided waves are semi-volumetric but can still require significant 

time, are not as sensitive to small scale damage, and require multiple interrogations. With these 

considerations, it is clear that coda wave NDE has the potential to perform better than other 

ultrasonic methods with a single interrogation of a volume. 
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Table 6-6. Adjusted coefficient of determination 

(𝑅̅2) between residual energies and fit equations. 

Specimen 
CFRP Polycarbonate 

Etemp Espec Etemp Espec 

1 0.96 0.94 0.95 0.98 

2 0.95 0.94 0.98 0.97 

 

 

 

  
(a) (b) 

  

 
(c) 

Figure 6-15. Fit equations (black lines) and 95% confidence bounds (gray lines) for non-

normalized residual energy data for specimen #1 with (a & b) CFRP and (c) polycarbonate. 

Improved confidence bounds for 2-6 mm diameter range. The signals are transmitted and 

received with a pair of 12.5 mm 1MHz longitudinal transducers excited with a spike pulse. 
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(a) (b) 

Figure 6-16. Fit equations for non-normalized residual energy data for specimen #3 with (a) 

CFRP and (b) polycarbonate. The signals are transmitted and received with a pair of 12.5 mm 

1MHz longitudinal transducers excited with a spike pulse. 

 

 

6.4.6 Defect Sizing 

 In order to test the sizing accuracy of the derived residual energy feature equations (eq. 6.1 

& 6.2) in a simulated “field inspection,” coda wave signals were collected from a secondary 

(nominally identical) quasi-isotropic CFRP sample identical experimental configurations and hole 

locations as described by (Specimen #2) and Figure 4-2a respectively. The measured residual 

energy feature amplitudes for several drilled through-holes are listed in Table 6-7 along with the 

estimated hole diameters and the nominal drill bit sizes. The difference between the nominal hole 

diameters and the estimated diameters is within 0.5 mm for all cases, and is generally quite a bit 

closer with one case correctly estimating the diameter to within a few thousandths of a millimeter. 

This sizing accuracy is quite remarkable considering that coda waves are a volumetric 

interrogation method and that these holes represent a relative volume (hole volume over plate 

volume) of a few thousandths of a percent. 

 Error in estimating the size of the drilled holes is attributable, at least in part, to the spindle 

run-out (bit wobble), which will cause enlarged holes. The spindle run-out was determined to be  
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Table 6-7. Estimation of hole diameter for drilled through-holes in quasi-isotropic CFRP based on 

equations (5.18) and (5.19) 

Measured Values Estimated Size Actual Drill Bit 

Size 

(mm) ±2.5E-3 

Error (%) 

Etemp 

(V2s) 

Espec 

(V2s) 

Etemp 

(mm) ±0.75 

Espec 

(mm) ±0.5 
Etemp Espec 

0.0087 0.0125 2.30 1.98 1.984 15.9 0.2 

0.0116 0.0272 2.60 2.93 2.756 5.7 6.3 

0.0202 0.0426 3.50 3.66 3.160 10.8 15.8 

0.0289 0.0712 4.20 4.20 4.335 3.1 3.1 

 

 

within 0.075 mm for all cases. This yields relative errors of less than a few percent. Other 

unquantifiable factors that may affect the sizing accuracy are fiber tear-out, delaminations, and 

back surface splintering. Care was taken while drilling to minimize these, and none of these were 

observed during visual inspection of the hole.  

 This simple example demonstrates the reproducibility of the differential features, the 

capability to quantify damage, and the capability to size defects based on differential feature 

amplitude. As noted previously, equations 6.1 and 6.2 do not accurately describe the feature 

amplitudes for all of the data points (small and large scale damage). Small scale damage size can 

still be estimated if the equations’ coefficients are modified as shown in Figure 6-16. 

 

 

6.5 Effect of System Parameters 

6.5.1 Feature linearity 

 Coda waveforms were collected using several power levels with identical transducer 

placement and coupling to check the linearity of the received waveforms and extracted differential 
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features. Coda wave propagation is inherently non-linear since a coda wave consists of a 

superposition multiple wave modes and propagation paths, but the ultrasonic system is expected 

to be linear since the measurements are made within the linear region of each component. The 

differential features are not expected to change with power level since they are normalized to unity 

energy. 

 The system is operating linearly if no new or differing structures appear in the waveform 

or spectrum with changing power level. A comparison of waveform amplitudes at 100% and 50% 

input power for the three materials is shown in Figure 6-17. The waveforms are normalized to the 

maximum amplitude of the 100% power signal for each material. A 50% reduction in the power 

of the input signal corresponds to an amplitude reduction of ~40% for each sample and a 60-65% 

reduction of energy, but no new/differing structures are apparent. The correlation coefficient was 

calculated at zero time lag to confirm the similarity of the waveforms, which yielded correlation 

values of 0.9965, 0.9995, and 0.9980 for aluminum, CFRP, and polycarbonate respectively. The 

only difference between the full and half power waveforms is very subtle changes attributed to 

noise. The nature of these subtle differences was examined further by calculating the five 

differential features with the 100% power signal as baseline and the 50% power signal as the 

measured signal. The features’ mean values and standard deviations are on par with those listed in 

Table 6-1, again demonstrating that the only difference between the full and half power signals is 

the lower signal-to-noise ratio of the half power signal. The correlation coefficients and differential 

features prove that no new or differing features are present with changing power levels. Therefore, 

the system is linear. 

 Figure 6-18 shows plots of residual temporal energy, residual spectral energy, loss of 

correlation with increasing hole diameter for each of the three samples. The differential features  
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(a) (b) 

  

 
(c) 

Figure 6-17. Comparison of waveforms from full strength signals and signals with -6dB input 

collected from (a) aluminum, (b) CFRP, and (c) polycarbonate samples. The received waveforms 

are normalized to the maximum amplitude of the 100% power waveform for each pair. The 

signals are transmitted and received with a pair of 12.5mm longitudinal transducers (2.25 MHz 

for aluminum and 1 MHz for CFRP and polycarbonate) excited with a spike pulse. 

 

 

were extracted from baseline-measured signal pairs collected at 100% and 50% input power. A 

comparison of the extracted features shows that decreasing the input power does not affect feature 

amplitude or defect detection capability. Although some variation in the repeatability of each data 

point is observed due to the decreased signal/noise ratio, generally the repeatability remains nearly 

constant with changing power levels. The other two differential features exhibit similar behavior. 

A quantitative measure of the similarity between the full power and half power data sets is provided 

by the RMSE (Table 6-8). Four of the five differential features are repeatable to within a percent 

where the exception is the differential curve length. 

 Thus, the differential features also show the expected behavior. This result is significant 

because it indicates that differential feature exhibit several desirable characteristics of damage 

metrics: amplitude and detectability are independent of input power, baseline and measured signals 

need not have the same amplitude, and repeatability is not significantly affected by power/gain 
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settings. Signal to noise ratio was not considered for these measurements. The system noise level, 

however, should remain roughly constant as only the input signal is modified. 

 

 

  
(a) (b) 

  

 
(c) 

Figure 6-18. Comparison of differential signal features extracted from full strength signals and 

signals with -6dB input collected from (a) aluminum, (b) CFRP, and (c) polycarbonate samples. 

The signals are transmitted and received with a pair of 12.5mm longitudinal transducers (2.25 

MHz for aluminum and 1 MHz for CFRP and polycarbonate) excited with a spike pulse. 

 

 

Table 6-8. Comparison of the coda waves differential features of half power 

signal to the original signal using Percent Relative Mean Squared Error. 

Sample Etemp Espec LoCoh LoCor DCL 

Al 0.10 0.02 0.02 0.11 12.74 

CFRP 1.10 0.05 0.98 1.07 8.27 

Poly 0.21 0.15 0.23 0.17 2.80 
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6.5.2 Feature Reproducibility 

 Regardless of how sensitive to damage or repeatable a technique is, if the results are not 

repeatable or cannot be recreated, then the technique is not very useful. To test the reproducibility 

of damage detection with coda wave differential features, signals were collected from two distinct, 

but nominally identical quasi-isotropic CFRP samples as described by specimen #1. The 

differential features were then extracted with the results for the temporal and spectral residual 

energy features shown in Figure 6-19. Reproducibility of the damage detection with the differential 

features is quite good as most of the data points for the two data set lie within one measurement 

error of each other. A quantitative comparison of the two data sets for all five features is provided 

in Table 6-9 using the RMSE. The spectral residual energy feature provides the best 

reproducibility, RMSE = 0.89%, while the differential curve length feature again gives the worst 

performance, RMSE = 10.41. 

 Two previous examples have also been provided which demonstrate the reproducibility of 

the differential feature amplitude in the presence of damage. Recreating the data published by 

Michaels & Michaels (2005) (Figure 6-2) involved distinct experimental set-ups and transducers 

in addition to distinct samples. Estimating the size of drilled through-holes (Table 6-7) involved 

generating an equation based on measurements from a primary sample then using the equation to 

determine the hole diameter. Both of these cases confirmed the reproducibility of coda wave 

differential features. This reproducibility is really quite remarkable given that the coda waves 

themselves are superposition fields of multiple scattered and reflected waves. 

 Dissimilarities in the differential features between two distinct applications are caused by 

variations in several aspects of the measurement system and samples: (1) the transducers 

themselves, (2) transducer placement, (3) transducer coupling, (4) the experimental system, (5) 
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sample geometry, and (6) material variations. The transducer placement, transducer coupling, and 

sample geometry will always vary slightly, and hence are present in each of the three cases 

presented. Material variability additionally is present for the CFRP cases since composite materials 

are far less consistent between samples than other materials such as metals. Recreating the data 

published by Michaels & Michaels (2005) however, is influenced by all six factors since a 

completely different experimental set-up was used along with different transducers. Even with all 

of these causes of dissimilarity between the coda waves for different samples, the differential 

feature behavior in the presence of damage is reproducible, barring results over 6 mm hole 

diameter in aluminum. 

 

Figure 6-19. Example of the reproducibility of temporal (Etemp) and spectral (Espec) residual 

energy differential features for a drilled though-hole of increasing diameter in nominally 

identical plates. Measurement error generally falls within the dot size of the data and hence is not 

shown. 
 

Table 6-9. Comparison of the coda wave differential features collected from separate 

(nominally identical) samples using Percent Relative Mean Squared Error. 

Etemp Espec LoCoh LoCor DCL 

4.34 0.89 8.37 6.18 10.41 
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Figure 6-20. Effect of electrical impedance matching on extracted differential signal features (1) 

residual temporal energy and (2) residual spectral energy for (a) aluminum, (b) CFRP, and (c) 

polycarbonate samples. The signals are transmitted and received with a pair of 12.5mm 

longitudinal transducers (2.25 MHz for aluminum and 1 MHz for CFRP and polycarbonate) 

excited with a spike pulse at three different PR damping settings. 
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6.5.3 Impedance Matching 

 The typical effect of impedance matching on extracted differential signal features is shown 

in Figure 6-20. Only residual temporal and spectral energy are shown, but the other features exhibit 

similar behavior. Increasing the PR impedance increases the amplitude of the features and 

consequently the slopes of the curves. Increasing the impedance also increases the scatter of the 

individual data points and results in ill-behaved curves with increasing numbers of outliers. The 

apparent effects on the differential features are due to the increased energy present in the received 

signals at higher impedance settings. Even though the features are normalized to unity energy in 

both the time and frequency domains, significantly new content is introduced with increased PR 

impedance, which resulted in increased residual energy. 

 

6.6 Conclusions 

 Diffuse field differential features were considered for quantitative defect detection and 

sizing in CFRP materials. Physical models predicted from dimensional analysis of the residual 

temporal and residual spectral energies have been fit to the experimental data with good agreement. 

Using 95% confidence bounds, the accuracy of defect sizing for a single drilled through-hole is 

estimated to be within ± 1 mm for both materials, but can be improved to ± 0.1 mm over a limited 

range. For multiple drilled through-holes, the defect sizing accuracy is estimated to be within ± 1 

hole. Thus diffuse field NDE offers a good detection and fairly accurate sizing method in a single 

volume scan that takes less than a second, stores little data, and is easy to process. 

 Signal features increase monotonically with increasing hole diameter for all three materials 

with few exceptions and can be used for defect sizing. A single 0.397 mm hole is detectable and a 

0.397 mm increase in hole diameter is resolvable. Repeated measurements increased the resolution 
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of the differential features for polycarbonate specifically and differential curve length generally. 

Spectral residual energy was found to be most sensitive to defects and differential curve length the 

least. It was shown that the differential features increase monotonically with increasing number of 

drilled through-holes and that the number of 0.397 mm (1/64”) holes is resolvable. The features 

were also shown to be sensitive to the depth of the hole with half- and through-holes were 

resolvable in the majority of cases for both CFRP and polycarbonate materials. The quadratic 

dependence of the differential features on the hole effective hole diameter was confirmed for the 

majority of cases. 

 Normalizing the differential features and fitting basis functions to the experimental data 

demonstrated that the features express the same information for the aluminum and polycarbonate 

samples, but that different information is obtained for the CFRP sample. The basis functions are 

approximated by a linear function of hole diameter for aluminum, polycarbonate features are 

approximated by a quadratic function of hole diameter, and CFRP features can be approximated 

by linear, quadratic, or cubic functions depending on the feature. Feature trend lines deviate for 

large holes in all cases due to increasing dissimilarity of the baseline and measured signals. The 

normalized CFPR and polycarbonate features are highly correlated, due in part to the trend line 

deviation, indicating similar scattering behavior. Several scattering regimes were encountered as 

the hole diameter increased which affected the amplitude of the features, most notably the 

transition from Rayleigh to intermediate scattering in CFRP. 

 Distinct damage regions were observed which are attributed to changes in the scattering 

regime for higher frequency content of the diffuse field. Relative damage volume levels below 

0.025% tend towards linear behavior with higher sensitivity while levels above 0.025% tend 

towards quadratic behavior with lower sensitivity. Multiple drilled through-holes confirm the 
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increased sensitivity for low damage volumes. This is a good indication that diffuse field 

differential features could detect micro-cracks and monitor fatigue damage in CFRP materials. 

 Even though the formation of coda waves is inherently non-linear, coda waves behave 

linearly and the extracted differential features remain constant for changing power levels. 

Additionally, coda wave differential features were shown to be repeatable, reproducible, and 

reciprocal. All of which are necessary for an ultrasonic NDE technique. Electrical impedance 

matching drastically affects the energy contained in the coda wave and modifies the structure of 

the waveform. Increasing the PR impedance decreases feature slopes, the occurrence of data 

outliers, and feature repeatability error. The differential curve length feature exhibits the worst 

performance in all areas, especially in its sensitivity to signal noise. Continued use is not 

recommended. The two residual energy features, on the other hand, perform quite well in damage 

sensitivity, repeatability, and reproducibility and are mostly insensitive to signal noise. 

 The sensitivity of diffuse fields makes the very attractive for SHM and the quantitative 

damage detection demonstrated in this work shows the potential of this method for damage 

diagnosis. It is quite probable that diffuse field differential features can detect micro-cracks and 

monitor fatigue damage. Further quantitative work is needed to examine feature behavior for other 

damage types and locations in addition to detecting damage in semi-infinite plates. The aim of 

future research is to extend detection to cracks and micro-cracks, and to determine the minimum 

necessary array size for large part inspection. The current drawbacks of diffuse field (coda wave) 

NDE preventing wider adoption are the difficulty in interpreting waveform changes and 

correlating them to specific damage and the lack of quantitative studies. Questions of sensitivity 

to different defects/damage, whether damage can be detected without a baseline, and effectiveness 

for arbitrary geometries still exist. Further research should consider these issues. 
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CHAPTER 7. EFFECT OF EXTERNAL INFLUENCES 

 

 The chapter presents work on the characterization and mitigation of external influences 

(e.g. environmental factors) on coda wave analyses and detectability of drilled holes. Section 7.1 

provides a brief introduction into previous work. The influence and mitigation of signal noise is 

examined in Section 7.2. Next, Section 7.3, Examines the influence and mitigation of temperature 

on coda wave relative velocity and differential features. Section 7.4 then briefly examines the 

influence of different types of plate boundaries on the formation of coda waves. Finally, the results 

and conclusions of this chapter are summarized in Section 7.5. 

 

7.1 Introduction 

 The high sensitivity of CWI to minute changes in the propagation medium not only allows 

for the detection of small stresses and nonlinearities, but also provides sensitivity to environmental 

changes such as a change in temperature between recording the baseline and secondary signals. 

Often, the changes of the differential signal feature caused by environmental changes or other 

aspects such as signal noise can be as large as or larger than the changes caused by stresses or 

damage. It is therefore important to understand how various benign changes can affect the 

differential parameters. The effect of temperature changes on the calculated coda wave relative 

velocity (relative time delay) is well known [Roberts et al. 1992, Snieder 2002, Lu & Michaels 

2005, Planes & Larose 2013, Zhang et al. 2013b] for effectively isotropic materials. It has not, 

however, been studied for other material models. There is also little to no work on the effects of 

signal noise and plate boundary conditions on differential features. 
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7.2 Signal-to-Noise Ratio 

 Signal-to-noise ratio (SNR) is a concern for ultrasonic measurement systems because a high 

noise level can obscure the signal of interest and reduce measurement capabilities. Previous work 

has demonstrated that the coda wave relative velocity can still be extracted with good accuracy 

from signals with a SNR equal to 1 (0 dB) collected from a sample of Agar-Agar gel [Hadziioannou 

et al. 2009]. Here the influence of the SNR on the differential features and damage detection is 

examined for a quasi-isotropic CFRP sample (specimen #1). Noise waveforms consisting of 

random white Gaussian noise are convolved with a typical coda wave signal to produce a noise 

contaminated signal as shown in Figure 7-1. The noise signals are generated with amplitudes 

corresponding to 50, 40, 30, 20, 10, and 6 dB SNR and converted to 12-bit signals with the same 

bin sizes as the original signal. Note that the original signal has a SNR of approximately 60 dB and 

the 12-bit ADC has a SNR of 66dB (Section 4.4.2). 

 As a quick reminder of how the damage index (DI) and measurement error are determined, 

two things are important: (1) the DI and the measurements error are based on the mean and 

standard deviation of the differential feature amplitude distribution respectively and (2) both the 

baseline offset and the standard deviation of the distributions are expected to increase inversely 

with SNR since the signals become increasingly dissimilar. Figure 7-2 shows the effect of 

decreasing SNR on the baseline and 2.381 mm diameter drilled through-hole measurement 

distributions for the temporal residual energy feature. The mean values of the baseline distributions 

increase exponentially with decreasing SNR which indicates an increasing dissimilarity between 

repeated signals. This can only be attributed to the random noise. The mean values of the damage 

distributions also increase with decreasing SNR such that the separation between the mean values 

of the baseline and 2.381 mm distribution only decreases by approximately 10% when the SNR is 
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changed from 60 to 10 dB. This indicates the resolvability of damage decreases with SNR as 

expected and that noise obscures damage detection. Additional scatter in the differential feature 

amplitudes due to decreasing SNR is also observed in the standard deviations of both the baseline 

and damage distributions. Thus the measurement error also increases inversely with SNR. This 

confirms that both the standard deviation and baseline offsets are measures of noise, and since the 

mean of the damage distributions increase proportionally to the increasing mean of the baseline, it 

is likely that the baseline offset can be used as a “noise calibration” of sorts. 

 Amplitudes of the temporal residual energy and loss of coherence features are shown in 

Figure 7-3 over a range of drilled through-hole diameters for several SNR’s. The true amplitudes 

(Figure 7-3(1)) exhibit the shifts in the mean baseline values (the horizontal lines) and the 

reduction in the resolvability of different damage increments. If the baseline offset is indeed a 

“noise calibration” of sorts, then the various SNR data sets should overlap by subtracting the 

baselines from the measurements. The adjusted (measurement – baseline) feature amplitudes are 

shown in Figure 7-3(2). Although the temporal residual energy and loss of coherence features are 

not the best and worst performing features, they do exhibit some interesting behavior and 

demonstrate that the differential features have drastically different sensitivities to SNR. The good 

alignment of the temporal residual energy feature amplitudes proves that the baseline offset is a 

noise calibration and can be removed from measurements. The reduction in feature amplitude for 

the 10 and 6 dB SNR cases demonstrates the decreased sensitivity to damage due to the decreased 

separation of the damage and baseline distributions. The amplitude reduction is quite drastic for 

the loss of coherence feature, which indicates that this particular feature is very sensitive to SNR 

 A quantitative measure of the effect of SNR on the true and adjusted feature amplitudes is 

provided in Table 7-1 using the percent relative mean squared error (RMSE). All five differential 
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features are affected by SNR with the differential curve length being affected the most and the 

spectral residual energy being affected the least. The spectral residual energy is so insensitive to 

SNR that a significant change in feature amplitude is not observed until the SNR reaches 6 dB. 

Adjusting the measured amplitudes to the baseline amplitudes greatly reduces the observed error 

for all cases with a reduction of nearly 100% in the most extreme cases. 

 The RMSE values for the adjusted measurements indicate the dependence of the differential 

features’ performance on SNR. Differential curve length is once again the worst performing feature 

and quickly loses all sensitivity to damage with the slightest increase in random noise. Loss of 

coherence is the second worst performer, but maintains some sensitivity until the SNR equals 20 

dB, then quickly losses all sensitivity. This is also shown in Figure 7-3(b2). The remaining three 

features, temporal residual energy, spectral residual energy, and loss of correlation, maintain their 

sensitivity with significant deviations starting for a SNR of 6 dB, and the residual spectral energy 

is the best performer by far as the data only deviates by one percent at a SNR of 6 dB. This 

insensitivity to damage is quite remarkable, especially considering the small scale of the damage 

detected (0.397 mm diameter) and the small scale of the damage increment (0.397 mm diameter 

increase). This insensitivity also unequivocally demonstrates that coda waves NDE can operate in 

noisy environments and has the potential to be used over long distances where the signal will have 

attenuated significantly. 
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(a1) (a2) 

  

  
(b1) (b2) 

  

  
(c1) (c2) 

Figure 7-1. Illustration of adding random white Gaussian noise to a coda waveform. (1) The 

original waveform and noise signal with specified signal-to-noise ratio, (2) Noisy waveform with 

specified signal-to-noise ratio consisting of the original waveform and the noise signal, (a) 30 dB 

signal-to-noise ratio, (b) 10 dB signal-to-noise ratio, and (c) 3 dB signal to noise ratio. Coda 

wave signals were collected on a quasi-isotropic CFRP sample (specimen #1). 
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Figure 7-2. Measurement distributions of the residual temporal energy feature for the baseline 

(black) and 2.381 mm (6/64”) drilled through-hole (red) for several signal-to-noise ratios. Coda 

wave signals were collected on a quasi-isotropic CFRP sample (specimen #1). 

 

 

  
(a1) (a2) 

  

  
(b1) (b2) 

Figure 7-3. Amplitude of residual temporal energy feature with various SNR’s (nominal is ~60 

dB) where (1) is the true feature amplitude with the baseline offset indicated by the horizontal line 

and (2) is the feature amplitude minus the mean baseline amplitude for (a) the residual temporal 

energy and (b) the loss of coherence. The noise is random white Gaussian noise that is added to 

the original signal such that the ratio of the noise amplitude to the original signal amplitude is as 

indicated. 
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Table 7-1. Comparison of the coda waves differential features of a noise 

modified signal to the original signal using Percent Relative Mean Squared Error. 

Amplitude 
SNR 

(dB) 
Etemp Espec LoCoh LoCor DCL 

True 

50 0.00 0.00 0.00 0.00 39.97 

40 0.00 0.00 0.19 0.00 817.16 

30 0.04 0.00 14.00 0.00 10924.67 

20 3.76 0.05 352.17 0.14 1.2101E5 

10 326.47 3.75 2025.41 12.24 1.1994E6 

6 11723.83 298.40 4123.71 580.65 8.5121E6 

Adjusted 

50 0.00 0.00 0.00 0.00 5.04 

40 0.00 0.00 0.01 0.00 31.43 

30 0.00 0.00 0.77 0.00 67.49 

20 0.00 0.00 14.42 0.00 98.64 

10 0.82 0.00 61.87 0.20 90.27 

6 28.41 1.06 90.77 9.20 108.93 

 

 

7.3 Thermal Induced Relative Velocity Variation 

7.3.1 Temperature Dependence of Coda Wave Phase 

 The linear dilation of coda waveforms due to thermal variations was first demonstrated by 

Weaver & Lobkis (2000) for signals collected from isotropic materials, in this case a small 

aluminum billet. This was later confirmed for aluminum plates [Lu & Michaels 2005] and concrete 

blocks [Niederleithinger & Wunderlich 2013]. Previous work in developing the CSMW technique 

hinted at the linear phase dependence for acrylic, but did not analyze in any detail [Roberts et al. 

1992]. Here the coda wave phase is shown to depend linearly on thermal loading for both acrylic 

(isotropic) and unidirectional CFRP (transversely isotropic) plates. 

 In order to examine the influence of temperature variations on the coda wave phase, the 

baseline and measured signals were broken into consecutive, non-overlapping time windows and 

the corresponding windows for the baseline and measured signals are then cross-correlated. The 
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lag time of the peak correlation as a function of the window center time is shown in Figure 7-4 for 

both acrylic (isotropic) and unidirectional CFRP (transeversely isotropic). The legend gives both 

the temperature at which the coda waves were collected and the slope of the fit line divided by the 

temperature change. Linear trends were fit to the data sets with Least Squares. The time lag of the 

peak correlation is equivalent to the signal phase, and the linear dependence of the phase on the 

window center time is readily apparent. If the signal phase is also linearly dependent on the 

temperature change, then the slope of the data sets divided by the temperature change should be a 

constant. This is indeed the case for both materials where the maximum error observed for this 

constant is 7.68 % for the Plexiglas sample and 9.09 % for CFRP. The difference between the 

Plexiglas and CFRP errors is readily attributable to the differences in the consistencies of the two 

materials. 

 The observations that the phase delay of coda wave signals is linearly dependent on both 

time and temperature for both Plexiglas and CFRP plates indicate that thermal loads cause nearly 

pure dilatations in the waveform. Two lemmas instantly become applicable due to the thermal 

induced dilation: 1) the stretching technique, which assumes linear dilation, can be applied to these 

coda waves, and 2) the change in the relative time lag measured by either CWI, CSMW, or 

Stretching is the change in the relative velocity of the coda wave. These assertions support all of 

the following work in this chapter. This is the first demonstration of linear phase dependence for 

a non-isotropic material. 
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(a) (b) 

Figure 7-4. Cross-correlation time lag of peak correlation as a function of window center time 

and temperature change for a) Plexiglas and b) unidirectional CFRP with transducers aligned to 

the fibers. The linear dependence of the time lag on both parameters is apparent. The legend 

shows the temperatures at which the waveform was collected along with the slope of the best fit 

line divided by the temperature change. 

 

 

 
Figure 7-5. Waveforms and spectra collected from one-sided pitch-catch UT on 0.9 cm Plexiglas 

plate. Signal was transmitted with a 1.25 cm, 1 MHz P-wave transducer and a spike excitation 

and was received with the three transducers at the 0˚ orientation; the transducer pairs separated 

by 8 cm.  
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7.3.2 Effect of Receiver Type and Orientation on Waveforms and Spectra 

 Figure 7-5 shows the results from the one-sided pitch-catch propagation through the 

Plexiglas specimen. The raw signals and spectra are highly dependent on the receiver type. Similar, 

periodic amplitude spikes are observed in the raw signals which correspond to a spectral peak 

around 0.5 MHz and are likely due to the plate thickness. The overall structure of the signals is 

quite different however as can be seen by the differences in the spectra. The distribution of spectral 

energy decreases in frequency as the receiving transducer face increases in diameter, though 

similar spectral peaks are present in all three spectra.  

 The raw baseline signals collected from the CFRP specimen for each transmitter-receiver 

pair and each orientation as shown in Figure 7-6 while the corresponding spectra are shown in 

Figure 7-7. It is immediately apparent that the signals are receiver and angle dependent. Figure 7-6 

& Figure 7-7 show that the signals change drastically with orientation. The 0˚ arrives and dies out 

very quickly while the 45˚ and 90˚ signals arrive latter (with the 90˚ arrive ~10s after the 45˚ 

signal) and last much longer. The spectral content also changes drastically with receiver 

orientation, which is shown by the distribution of spectral energy decreasing with increasing 

receiver angle. This is likely to be due to fiber- and matrix-dominated properties similar to those 

observed by Vary (1990). The high attenuation in CFRP allows for lower frequency (slower) wave 

modes to travel farther. The attenuation properties can be easily seen when inspecting a thick vs 

thin composite with direct propagation. 

 In direct propagation, the fiber direction has a higher effective modulus, thus the fiber 

direction has a higher propagation velocity which allows higher frequencies to travel farther before 

being attenuated out. On the other hand, the transverse direction is matrix dominated, has a lower 

effective modulus, and a lower propagation velocity which allows for higher frequencies to be 
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attenuated out before they can travel very far. The indirect propagation used in this study shows 

similar trends to direct propagation, which is unexpected. This indicates that high frequencies 

prefer the fiber direction and low frequencies prefer the transverse direction. It is interesting to 

note that the 45˚ orientation is more similar to the 90˚ orientation than the 0˚. Since the indirect 

signals demonstrate this preferential behavior, we can predict that we should observe large relative 

velocity variations in the 45˚ and 90˚ orientations due to the larger moduli variation in the matrix 

than in the fibers. 

 

 
Figure 7-6. Typical ultrasonic waveforms collected from one-sided pitch-catch UT on 0.9 cm 

unidirectional CFRP plate. Signal was transmitted with a 1.25 cm, 1 MHz P-wave transducer and 

a spike excitation. The transducers were 8 cm apart. The columns indicate the receiver type used 

and the rows indicate the angle of the transmitter-receiver pair to the fibers. 
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 The signals and spectra from Figure 7-6 & Figure 7-7 show the effect of the receiver on 

the signal. Similar trends can be observed between the signals and spectra from the CFRP specimen 

and those from the Plexiglas specimen. The signal changes with receiver, but the main signal 

features are present in all signals and the main features become obscured with decreasing aperture 

size. Contrary to the Plexiglas results, the distribution of spectral energy from the CFRP sample 

decreases in frequency with aperture size and becomes more diffuse for the 45˚ and 90˚ fiber 

angles. Similar structures are present in the 12.5 and 6.25 mm receiver spectra. The diffusing of 

the 2 mm spectrum indicates that the transducer may have an issue with self-noise. 

 

 
Figure 7-7. Typical ultrasonic spectra collected from one-sided pitch-catch UT on 0.9 cm 

unidirectional CFRP plate. Signal was transmitted with a 1.25 cm, 1 MHz P-wave transducer and 

a spike excitation. The transducers were 8 cm apart. The columns indicate the receiver type used 

and the rows indicate the angle of the transmitter-receiver pair to the fibers. 
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7.3.3 Relative Velocity Variation 

 Thermally induced relative velocity variations from the Plexiglas specimen are shown in 

Figure 7-8. The relative velocity variations are very similar (3 % relative error between the 

respective linear fits) for the 12.5 and 6.25 mm receivers with a few outliers. The results from the 

2 mm receiver are also very similar to the other two data sets for temperatures close to room 

temperature14 (Figure 7-8b), but starts to deviate from the other data sets around 22.1 ˚C. This 

deviation is caused by the higher uniformity of the pinducer signal, which yields multiple instances 

of highest correlation (consider the correlation of two toneburst signals of the same frequency). 

The deviation can be corrected by examining the pinducer correlation results and manually 

selecting the correct maximum correlation. The three transducer-receiver pairs behave as expected 

for an isotropic, homogeneous material with thermal loading (i.e. they all yielded very similar 

results). Little to no evidence of phase cancellation was observed for the different receivers. 

 

  
(a) (b) 

Figure 7-8. Thermally induced relative velocity variations vs. receiver type from one-sided 

pitch-catch UT on 0.9 cm Plexiglas plate for (a) full range and (b) enlarged region around T = 

0. Signal was transmitted with a 1.25 cm, 1 MHz P-wave transducer and a spike excitation and 

was received with the transducers at the 0˚ orientation; the transducer pairs separated by 8 cm.  

                                                 
14 21.2 ˚C: See footnote 11, pg. 107. 
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Table 7.2. Slopes of the linear trend lines in Figure 7-8, Figure 7-9, and Figure 7-10. The 

trend lines were determined by using a least squares linear fit. 

  Measurements Error (%) 

  Plexiglas CFRP CFRP 

  0˚ 0˚ 45˚ 90˚ 0˚-45˚ 0˚-90˚ 45˚-90˚ 

M
ea

su
r-

em
en

ts
 Long -0.2039 -0.2261 -0.0180 -0.0796 92.04 64.79 77.39 

AE -0.2103 -0.0687 -0.1797 -0.1009 61.77 31.91 43.85 

Pin -0.1200 -0.1096 -0.1346 -0.1293 18.57 15.54 3.94 

E
rr

o
r 

(%
) Long-AE 3.04 69.62 89.98 21.11    

Long-Pin 41.15 51.53 86.63 38.44    

AE-Pin 42.94 37.32 25.10 21.94    

Long = longitudinal 

AE = Acoustic Emission 
Pin = pinducer 

 

 The thermally induced relative velocity variations measured from the CFRP sample are 

plotted in Figure 7-9and Figure 7-10. Linear trends are observed which indicate that, as with 

isotropic materials [Weaver & Lobkis 2000], the thermal loading of transversely isotropic (or 

slightly orthotropic) materials also produces nearly pure dilation of acoustic waves. 

 It is interesting to note that unlike the Plexiglas results, the receivers demonstrate different 

sensitivities for each of the orientations (Figure 7-9a, b, and c) with the variance of the sensitivities 

decreasing with increasing fiber angle (Table 7.2). Thus the sensitivity of coda wave relative 

velocity to thermal changes is affected by both the receiver type and the fiber orientation. A 

comparison of the effect of fiber angle for each of the receivers is shown in Figure 7-10a, b, and c 

where it is clear that the fiber angle has a dramatic effect on the receiver sensitivity, with the 12.5 

mm receiver showing the maximum variance in sensitivity while the 2 mm receiver shows the 

least. This demonstrates that the pinducer is nearly insensitive to fiber orientation while the 12.5 

mm receiver is the most sensitive. Also notable is that the 12.5 mm receiver at a 0˚ fiber angle is 

most sensitive to thermal changes. 
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 Our expectation of phase cancellation can partially explain the observed differences in 

receiver sensitivity at various fiber angles. As observed in Figure 7-6 & Figure 7-7, the scattered 

waves that travel along the fibers experience a higher velocity and less visco-elastic absorption, 

thus allowing higher frequency modes to propagate farther than in the transverse direction. Phase 

cancellation should be more prevalent as the ratio of aperture diameter the wavelength increases. 

Also, our prediction of increased relative velocity change with increasing fiber angle can be 

observed in the results from the 6.25 and 2 mm receivers (Figure 7-10). The 12.5 mm receiver 

does not show this trend as the results for the 0˚ fiber angle is likely greatly affected by phase 

cancellation. 

 

  
(a) (b) 

  

 
(c) 

Figure 7-9. Thermally induced relative velocity variations vs. receiver type (1 MHz P-wave, AE, 

and Pinducer) for a) 0˚, b) 45˚, and c) 90˚ transmitter-receiver pair orientations. Signal is 

transmitted in a 0.8 cm unidirectional CFRP plate in one-sided pitch-catch mode with a 1.25 cm, 

1 MHz P-wave transducer and a spike excitation. transducers are separated by 8 cm. 
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(a) (b) 

  

 
(c) 

Figure 7-10. Thermally induced relative velocity variations vs. fiber angle (0˚, 45˚, and 90˚) for 

a) 1.25 cm, 1 MHz P-wave, b) 6.25 mm AE, and c) 2 mm Pinducer receivers Signal is 

transmitted in a 0.8 cm unidirectional CFRP plate in one-sided pitch-catch mode with a 1.25 cm, 

1 MHz P-wave transducer and a spike excitation. Transducers are separated by 8 cm. 

 

7.3.4 Effect of Thermal Loading on Coda Wave Differential Features 

 In the previous chapter, differential signal features were used to measure the difference 

between subsequent coda waveforms due to the introduction of damage. Several authors have 

noted that with the increased sensitivity to small scale damage there is an accompanying increased 

sensitivity to environmental changes such as thermal fluctuations [Mazzeranghi & Vangi 1999, Lu 

& Michaels 2005, Zhang et al. 2013b]. The effect of thermal variations on several differential 

features extracted from an aluminum plate has been previously examined [Michaels & Michaels 

2005, Lu 2007], where it was shown that introduced damage causes little to no dilation of the coda 
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waves. Thus it is possible to distinguish damage from thermal effects. Here the effect of thermal 

fluctuations on the five differential features utilized in the previous chapter is examined for a 

transversely-isotropic, unidirectional CFRP plate. 

 Figure 7-11 shows the resulting differential features extracted from coda wave signals 

collected with the transducer pair oriented parallel to, perpendicular to, and at a 45˚ angle to the 

fibers. All differential features exhibit significant amplitude changes (significant being larger than 

some of the damage amplitudes from the previous chapter) with a difference of only a few degrees. 

This is problematic for damage detection since the damage can easily be obfuscated by the thermal 

variance between the collection of the baseline and the measured signals unless it is accounted for. 

Although it is possible to distinguish damage from thermal effects [Michaels & Michaels 2005] 

and it is possible to separate relative time lags caused by thermal loads and damage [Zhang et al. 

2013], it is not possible to directly decouple the thermal and damage effects in the differential 

features. The most accurate solution to decoupling the two is to determine the dilation constant of 

the material under inspection (Section 7.3.1), measure the thermal variation, then dilate the 

measured signal to match the temperature of the baseline. This method requires significant 

previous testing, requires a thermocouple, and requires the computationally expensive dilation 

process. An alternative idea is to have a library of multiple baselines taken at many different 

temperatures, correlate the measured signal to the baseline signals, the use the baseline that most 

closely matches [Lu & Michaels 2005, Lu 2007]. The issue with this method is the requirement of 

the baseline library and the assumption that an undamaged and damaged signals will correlate well 

enough to remove the thermal bias between the two. 

 Closer examination of the thermal effects in Figure 7-11 shows that four of the five features 

(the exception being differential curve length) exhibit behavior that is quadratic with  
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(a) (b) 

  

 
(c) 

Figure 7-11. Variation of differential feature amplitude with temperature change. Coda wave 

signal were collected from a unidirectional CFRP plate with the transducer pair aligned with the 

a) 0˚ fiber angle, b) 45˚ fiber angle, and c) 90˚ fiber angles. The signal is transmitted and 

received with 1MHz longitudinal transducers. 

 

temperature. This is confirmed by fitting a second order polynomial to the data set using Least 

Squares, where the resulting coefficients of determination, R2, are greater than or equal to 0.98. 

The differential curve length exhibits a behavior that is linear absolute valued with a zero point at 

T = 0. The zero point is expected and observed for all five features at each fiber orientation since 

there is no waveform dilation and hence no difference between the signals. Temporal residual 

energy is generally the most sensitive feature, though 0˚ spectral residual energy is the most 

sensitive of all cases. A comparison of each of the five features for the three fiber angles is provided 

in Figure 7-12, where it is easy to observe that the features collected from the 0˚ fiber orientation 

are the most sensitive to thermal variations. This is unexpected since the fiber dominated wave 



www.manaraa.com

199 

 

 

 

propagation properties (modulus, and coefficient of thermal expansion) are less sensitive to 

thermal variations than the matrix dominated properties [Mangonon 1999]. The features for the 

45˚ and 90˚ orientation are equally sensitive in all cases save for the loss of coherence where the 

90˚ orientation is more sensitive. 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

Figure 7-12. Variation of amplitude with temperature change for a) temporal residual energy, b) 

spectral residual energy, c) loss of coherence, d) loss of correlation, and e) differential curve 

length differential features. Coda wave signal were collected from a unidirectional CFRP plate 

with the transducer pair aligned with the 0˚, 45˚, and 90˚ fiber angles. The signal is transmitted 

and received with 1MHz longitudinal transducers. 
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7.4 Boundary Effects 

 Plate boundaries potentially play a very important role in the formation coda waves. The 

acoustic impedance mismatch between the elastic solid and air causes more than 98% of the 

acoustic energy to be reflected. Unlike with ballistic propagation where scattering and absorption 

are both loss mechanisms, the primary energy loss mechanism in coda waves is just absorption, 

which is volume dependent. Therefore, the coda wave from a small, finite plate will 

unquestionably contain more energy than a larger finite plate. The real question is whether a coda 

wave can still form in a semi-infinite plate. As the plate size increases, the acoustic energy will 

spread out and be absorbed more quickly, but there is a characteristic plate size in which the energy 

is completely absorbed before it can interact with the edge of the plate and make its way back to 

the receiver. 

 The effect of semi-infinite plate boundaries is to absorb significant amounts of acoustic 

energy as opposed to reflecting the energy. This effect is recreated by placing butyl tape on the 

edges of the plate. The absorption capabilities of the butyl tape used is demonstrated in Figure 

7-13, which compares pulse-echo signals collected with and without butyl tape on the back surface 

for both polycarbonate and quasi-isotropic plates. 

 The effect of the plate boundaries on coda waves was studied by collecting coda wave 

signals as the transducer pair approached the plate boundary (Figure 4-1c). Data was collected for 

0˚ and 90˚ fiber orientations for the unidirectional CFRP sample (0˚ CFRP, 90˚ CFRP) while the 

0˚ orientation was examined for the Plexiglas sample (0˚ Plexi) as it is isotropic. The 6 cm 

transducer separation was chosen to maximize energy in both directions. 
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(a) (b) 

Figure 7-13. Absorbing effect of butyl tape on pulse-echo waveforms collected from a) 

polycarbonate and b) quasi-isotropic CFRP plates. 

 

 The normalized peak amplitudes and their arrival time shifts for each of the received 

waveforms are plotted in Figure 7-14a & b respectively. The peak amplitude is normalized to the 

amplitude recorded at the center of the plate. The arrival time of the peak amplitude is likewise 

shifted by subtracting the arrival time of the peak amplitude at the center of the plate. Maximum 

variation in peak amplitude occurs for 0˚ CFRP with a value of ~0.4, while the minimum variation 

occurs for 90˚ CFRP with a value of ~0.13. Peak amplitude variation considered to be negligible 

for 90˚ CFRP as all of the variations fall within the error bars. The peak amplitude variations for 

0˚ Plexi and 0˚ CFRP could also be considered negligible for the same reason save for a single 

measurement (8 cm and 4 cm respectively) that falls just outside the error bar. Maximum peak 

amplitude arrival time shift is observed for 90˚ CFRP with a value of -8 s, while the minimum 

variation is observed for 0˚ Plexi with a value of 2.5. Again, the variations observed for 0˚ Plexi 

are negligible due to error, and variations observed for 0˚ CFRP would also be negligible if not for 

the apparent outlier that occurs at 4 cm from the boundary. Time shift variations for 90˚ CFRP 

have a general downward trend (with an outlier at 6 cm) while approaching the plate boundary that 

indicates that peak amplitude is arriving sooner. This decrease in peak amplitude arrival time is 

likely due to decreasing travel time and increasing amplitude of the edge reflections. 
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 The normalized spectral energy and normalized maximum coda wave decay rate for each 

of the received waveforms are plotted in Figure 7-15a & b respectively. Both the spectral energy 

and maximum decay rate are normalized to their respective values at the center of the plate. 

Maximum spectral energy variation occurs for 0˚ CFRP with a value of ~0.6, while the minimum 

variation occurs for 0˚ Plexi with a value of ~0.1. All of the variation for 0˚ CFRP and 90˚ CFRP 

are within measurement error and are therefore negligible. The spectral energy for 0˚ Plexi has a 

downward trend until 6 cm from the plate boundary, then it increases near the boundary. This is 

likely due to decreasing energy received from the other three boundaries as the transducers are 

moved until the fourth plate boundary reflects enough energy to compensate. The maximum 

variation in decay rate occurs for 0˚ Plexi with a value of ~0.5, while the minimum variation occurs 

for 0˚ CFRP with a value of 0.3. The variations fall within measurement error except for 90˚ CFRP 

which falls from 10 cm to 8 cm separation from the plate boundary, then steadily increases. This 

indicates that as the transducer pair approaches the plate boundary the coda wave increases in 

spectral power at latter times due to scattering received from the boundary. 

 Generally, the variations observed due to approaching the plate boundary can be considered 

negligible as they are typically within the repeatability error. This indicates that the coda wave can 

maintain much of its information regardless of the location of the transducer pair on the plate. It is 

important to note, however, that changing the location of the transducer pair changes the coda 

wave field and that high/low energy regions may be created/occur in different regions. 

 Further investigation into the influence of semi-infinite plate boundaries on the coda wave 

was performed by comparing coda wave parameters from quasi-isotropic and Plexiglas plates with 

0 to 4 semi-infinite boundaries. A pair of 12.7 mm 1 MHz longitudinal transducers were coupled 

to the plate centers with an 8 cm separation using Crystalbond 555 couplant. The transducers 
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(a) (b) 

Figure 7-14. Variation in coda wave a) peak amplitude and b) arrival time of the peak amplitude 

for a 0.9 cm Plexiglas plate and a 0.9 cm unidirectional CFRP plate. The signal was transmitted 

and received with a 1.25 cm, 1 MHz longitudinal transducer. The error bars indicate 1 standard 

deviation in measurement repeatability. 

 

 

  
(a) (b) 

Figure 7-15. Variation in coda wave a) spectral energy and b) maximum decay rate for a 0.9 cm 

Plexiglas plate and a 0.9 cm unidirectional CFRP plate. The signal was transmitted and received 

with a 1.25 cm, 1 MHz P-wave transducer. The error bars indicate 1 standard deviation in 

measurement repeatability. 

 

 

remained coupled to the plates throughout the changing boundary conditions. Figure 7-16 shows 

the resulting coda wave parameters, normalized to the free plate values. The observed variations 

in first arrival time, the peak amplitude, and the arrival time of the peak amplitude due to increasing 

number of semi-infinite boundaries are within one repeatability error of the free boundary value  
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(a) (b) 

Figure 7-16. Variation in coda wave parameters with increasing number of semi-infinite 

boundaries for a) a 0.9 cm unidirectional CFRP plate and b) a 0.9 cm Plexiglas plate. The signal 

was transmitted and received with a 1.25 cm, 1 MHz P-wave transducer. The error bars indicate 

1 standard deviation in measurement repeatability. 

 

 

for both plates. The variations in the spectral energy and peak decay rate, on the other hand, are 

affected by the semi-infinite boundaries. Spectral energy varies by 13% in the Plexiglas plate and 

by 38% in the quasi-isotropic plate, which is expected since the semi-infinite boundaries absorb 

acoustic energy. 

 The large variations in the decay rate is the most interesting result since Weaver postulated 

that the coda wave decay rate is a measure of absorption [Weaver 1987], which is a material 

property and should be relatively constant. Decay rate measures how quickly the tail of the coda 

wave decays, and the coda tail is comprised primarily of low frequencies. Low frequencies can 

travel farther due to lower attenuation and are therefore much more likely to be affected by the 

plate boundaries. Weaver himself noted that the decay rate can be greatly affected by the boundary 

conditions of the volume. The peak decay rates vary by 65% in the Plexiglas plate and by 95% in 

the quasi-isotropic CFRP plate. Considering this, it stands to reason that the variations in coda 

wave decay rate are a function of both the material absorption and the sample volume. For a plate, 
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the absorption should show a volumetric dependence until the plate reaches a characteristic length 

were the spread of the acoustic energy no longer affects the decay. This is replicated by the butyl 

tape, since the decay rate increases with the number of semi-infinite edges. It is interesting to note 

that the signal energy and decay rate for the quasi-isotropic CFRP plate decrease exponentially 

and increase linearly with the number of semi-infinite boundaries respectively. The linear increase 

of the decay rate supports the idea of volumetric dependence. 

 The insensitivity of the first three parameters to the number of semi-infinite boundaries 

indicates that the initial portion of coda wave is not influenced by extending the plate dimensions 

past 30 cm. The tail portion of the coda wave, on the other hand, is significantly influenced as is 

evidenced by the energy and decay parameters. These observations indicate that the formation of 

coda waves in plates is more dependent on the top and bottom surfaces of the plate than on the 

plate edges, but the amount of information carried in the waveform is dependent on the sample 

volume. This is particularly apparent for the Plexiglas sample since there is no internal scattering 

and the formation of the coda wave should be completely dependent on the plate boundaries, yet 

greater variations are observed for the quasi-isotropic CFRP plate. 

 

 

7.5 Summary and Conclusions 

 Signal-to-noise ratio has a dramatic effect on the amplitude of coda wave differential 

features that can easily mask damage. It was shown that the cause of the increased feature 

amplitude for signals with high levels of noise is due to the increased variation between 

waveforms. Even the feature amplitudes for repeated baseline measurements (ideally zero) 

increased due to the added random noise. Here it was shown that the effect of added noise can be 
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negated by subtracting the baseline offset from the feature amplitude. Three of the five differential 

features examined in this study were found to be insensitive to signal noise until a signal-to-noise 

ratio of 2. This demonstrates that coda wave NDE can operate in noisy environments and has the 

potential to be used over long distances or situations where the signal attenuates significantly. 

 The effect of thermal variations on several aspects of coda waves has been examined for 

both Plexiglas (isotropic with little to no internal scattering) and unidirectional CFRP (transversely 

isotropic with significant internal scattering). The linear dependence of the coda wave phase on 

window center time and temperature was confirmed for an isotropic material and was 

demonstrated for the first time for a non-isotropic material. This proves that thermal loading causes 

pure dilation of the waveforms and allows for the measurement of the coda wave relative velocity 

through the application of the stretching technique. Until this point it was unclear whether CFRP 

materials exhibited pure dilations or whether relative velocity measurements were physically 

meaningful. 

 In the isotropic and the transversely isotropic materials, the aperture affects the received 

waveform by obscuring the signal features and making it more uniform with decreasing aperture 

size. The effect on the spectra is to change the spectral energy distribution center frequency 

(increasing for the Plexiglas and decreasing for the CFRP) with decreasing aperture size. Although 

the waveform and spectra are affected by the aperture size, the relative velocity variation 

measurement was not affected for the Plexiglas sample. The aperture size had a dramatic effect on 

the thermally induced relative velocity measurement for the CFRP sample by causing a variance 

in the v/v vs. T sensitivities for all orientations. The minimum variance was observed for the 2 

mm receiver, which is an indication of the presence of phase cancellation for the other receivers. 

Fiber orientation also had a dramatic effect on the relative velocity measurement, again by a 
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causing a variance in the v/v vs. T sensitivities for the three receivers. The variance decreases 

with increasing fiber orientation which indicates the presence of fiber- and matrix-dominated 

properties that need to be further studied. 

 The effect of thermal variations on coda wave differential features was also examined. It 

was observed that the majority of features vary with temperature. This variation of the feature 

amplitudes can easily obfuscate damage detection and thus need to be further characterized. 

Several mitigation methods were presented and discussed. Each shows promise, but each has 

limitations and cannot completely decouple the thermal and damage effects from the differential 

features. The best solution currently available is to measure the temperature of the structure and 

dilate the waveform using a material dependent constant prior to damage detection. 

 Sample boundaries play an important role in the formation of coda waves for plates. The 

initial portion of the coda wave is formed due to the top and bottom surfaces and is not affected 

by absorbing plate edges. The tail portion of the coda wave, on the other hand, is strongly affected 

by the type of boundary (reflective vs absorbing) along the plate edges as the tail is formed 

primarily by the reflections from the plate edges. Even though the coda wave itself is drastically 

affected by a change in the boundary conditions of the plate edges, the detection of damage is not 

affected to nearly the same extent and detection of damage is still possible. 
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CHAPTER 8. CONCLUSIONS AND RECOMENDATIONS 

As stated in the abstract, “The central objective of this work, is to develop a quantitative foundation 

for the use of coda wave NDE for the inspection and evaluation of fibrous composite materials.”  

 In chapter 2 this thesis discussed three steps of work required to develop this foundation. A very 

brief recount is as follows: 

Step 1: analyze the most basic properties and processing of coda waves. 

1. Temperature change 

2. Develop and verify processing algorithms 

3. Determine spreading function for coda wave acoustic energy 

4. Develop definitions of attenuation and measure attenuation of coda wave energy 

5. Determine the effect of boundaries. 

 

Step 2 Detecting simulated damage and analyze basic damage detection capability, such as 

repeatability, sensitivity and reproducibility 

1. Detect defects such as drilled holes 

2. Determine detection capability 

3. Determine the behavior of damage indices (DI) by developing a model which relates the 

values of the damage indices to a damage parameter, such as defect volume. 

Step 3 

1. Detect realistic defects such as micro-cracks caused by fastener holes and barely impact 

damage 

2. Monitor damage growth by means of fatigue and/or compression after impact  

3. Field testing 

  

The need for the development of a quantitative foundation is clear since Coda wave NDE is a 

paradigm change from traditional ultrasonic NDE where a coherent ballistic (direct propagation) 

wave follows a mathematically traceable path and everything can be described by a deterministic 
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physical model. Coda waves, in contrast, are comprised of an indeterministic, incoherent, wave 

field without a definable travel path. The observer does not try to discriminate the wave, but tries 

to extract meaningful information such as a differential parameter. Due to the lack of well defined 

propagation, traditional definitions of NDT&E parameters such as velocity, attenuation, and 

wavelength, which are used widely in ultrasonic NDT&E, become undefinable in this new 

paradigm since the wave field is indeterministic in nature. It is precisely for this reason that many 

in the field of traditional ultrasonic NDT&E may have difficulty in accepting coda waves/diffuse 

fields as a viable method. Perhaps the name “coda wave” is unfortunate since it leads people to try 

to analyze and understand the coda wave signals as actual propagating waves as opposed to the 

time-varying superposition field sampled at a specific point that they actually are. 

 

8.1 Conclusions 

Several Coda wave differential features were considered for quantitative detection and sizing of 

localized defects in CFRP plates and were found to be sensitive to drilled holes. Physical models 

were drawn from the dimensional analysis of the residual temporal and residual spectral energies 

have been fit to the experimental data with good agreement, which highlights possible underlying 

physical principles governingcoda wave differences in the presence of drilled holes. Using 95% 

confidence bounds, the accuracy of defect sizing for a single drilled through-hole was estimated 

to be within ± 0.5 mm for both materials over the range of 2 to 6.4 mm diameter holes. For multiple 

drilled through-holes (0.4 mm diameter), the defect sizing accuracy was estimated to be within ± 

1 hole. Thus coda wave NDE can offer a good detection and sizing method in a single volume scan 

that takes less than a second, stores little data, and is easy to process. 

 Signal features increase with increasing hole diameter for the aluminum and polycarbonate 

samples examined with few exceptions and increase in two regions for CFRP samples (d <2 mm 
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and 2 mm < d). A single 0.4 mm hole is detectable and a 0.4 mm increase in hole diameter is 

resolvable in all samples.  The resolutions of the differential features for the polycarbonate samples 

specifically and differential curve length generally were increased by taking repeated 

measurements. Of all the differential features examined, spectral residual energy was found to be 

most sensitive to defects and differential curve length was found to be the least sensitive. It was 

shown that the differential features increase monotonically with increasing number of drilled 

through-holes and that the number of 0.397 mm (1/64”) holes is easily resolvable. The features 

were also shown to be sensitive to the depth of the hole with half- and through-holes resolvable in 

most cases for both CFRP and polycarbonate materials. The quadratic dependence of the 

differential features on the hole effective hole diameter was confirmed for the majority of cases. 

 Coda measurements were shown to be repeatable, reciprocal, and reproducible. This 

indicates that coda wave NDE is capable of sensitive measurements for the detection of damage. 

The measurements presented in this thesis were performed under controlled laboratory conditions: 

the transducers were semi-permanently attached during each data collection stage and the data was 

collected quickly so that the ambient room temperature in the lab varied by less than 0.1 ˚C. 

Measurements were made with decoupled and recoupled receivers to examine the variability 

introduced by the changing coupling conditions. The repeatability of the coda wave parameters 

was lower when decoupling and recoupling receivers, but would still enable the differentiability 

of damage. 

 Several aspects of the experimental configuration and data collection can strongly affect 

the coda waves themselves and the amplitude of the differential features used to detect damage. 

The aspects examined in this thesis were: signal-to-noise ratio, thermal variation, and absorbing 

edge boundaries. Mitigation methods were presented for the first two factors.  
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Signal-to-noise ratio has a dramatic effect on the amplitude of coda wave differential 

features and can easily mask damage, but this effect can be negated by subtracting the baseline 

offset from the feature amplitude. Three of the five differential features examined are insensitive 

to signal noise, using this mitigation method,  until a signal-to-noise ratio of 2. This demonstrates 

that coda wave NDE can operate in noisy environments and has the potential to be used in 

situations where the signal attenuates significantly. 

 It was observed that the majority of differential features vary with temperature. This 

variation of the feature amplitudes can easily obfuscate damage detection and thus needs to be 

further characterized. Several mitigation methods were presented and discussed. Each shows 

promise, but each has limitations and cannot completely decouple the thermal and damage effects 

from the differential features. Currently the best mitigation method is to measure the temperature 

separately and dilate the recorded waveform prior to damage detection/characterization analysis. 

 Sample boundaries play an important role in the formation of coda waves for plates. The 

initial portion of the coda wave is formed due to the top and bottom surfaces and is not affected 

by absorbing plate edges. The tail portion of the coda wave, on the other hand, is strongly affected 

by the type of boundary (reflective vs absorbing) along the plate edges as the tail is formed 

primarily by the reflections from the plate edges. Even though the coda wave itself is drastically 

affected, damage detection is still possible using the initial part of the wave. 

 Coda wave propagation and attenuation were examined in order to better understand the 

spreading function and give estimates to the distance a coda wave could spread. It was found that 

the time of first arrival of the coda wave occurred between the arrival time of a ballistic 

longitudinal mode and a ballistic shear mode. This corresponds either to a S0 Lamb wave mode or 

a reflected longitudinal wave mode. Extracting Lamb wave modes was examined and found to be 
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inapplicable as the wave modes are not separable in either the time or frequency domains. Based 

on the first arrival times, the coda waves have an elliptical to barbell shaped spreading function. 

This indicates a propagating wave mode. Additionally, the diffusion equation was fit to the coda 

waves with good agreement for aluminum, polycarbonate, and quasi-isotropic CFRP plates. 

Although this doesn’t preclude direct arrivals of specific modes for the first arrival, the diffusion 

model predicts multiply reflected and scattered waves. The arrival times of the peak amplitude do 

not exhibit an elliptical/barbell spreading function which contradicts the propagating wave mode 

assumption. This is expected since the coda wave is a superposition field and not a wave mode. 

 Several attenuation definitions were applied to the coda waves collected. The spatial 

attenuations were not well behaved and were not well fit by a decreasing exponential as would be 

expected for a propagating wave mode. This further indicates that traditional ultrasonic NDE 

measurements are not applicable in a coda wave analysis. One of the best measures of coda wave 

attenuation is the attenuation of signal energy with time (i.e. coda wave decay rate) as the definition 

is not dependent on the propagation of a specific wave mode. As expected, the isotropic materials 

exhibit circular attenuation function while the uni-directional CFRP plate exhibits an angular 

dependence. It is noted, however, that the size of the plate and reflecting vs. absorbing plate edges 

can dramatically affect the decay rate. 

 Thus we see that out of the three necessary steps outlined in the introduction, and reiterated 

in the beginning of this chapter, steps one and two have been fully addressed in this work. Step 

three could not be addressed due to paucity of time. This last step is probably the most important 

if Coda wave NDT&E is to be brought from its current ancient state into a mature method. Thus, 

extensive examination of this last step is warranted. 
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8.2 Contributions 

 The first and foremost contribution from this research is the quantitative application of 

coda waves to fibrous composite plates for NDT&E. The research results demonstrate the damage 

detection capabilities for a few specific cases (small, flat plates less than 300x300 mm examined 

under laboratory conditions), indicate the feasibility of using coda waves for SHM of composite 

structures, and provide a quantitative foundation for future research. 

 The second contribution of this thesis is a derivation of a model to describe the relation 

between the volume of drilled through-holes in plates and the amplitude of residual energy based 

differential signal features. This is a step in the transition of a largely qualitative approach to a 

quantitative one. With this relationship, either the feature amplitude or damage volume (hole size) 

becomes predictable given the other. For the samples examined here, these models need to be 

applied to small holes (d < 2 mm) or intermediate holes (2 < d < 6.4 mm) separately. 

 The third contribution of this thesis is an analysis of the sensitivity of differential signal 

features to drilled through-holes in plates, the accuracy of the features in estimating defect sizes, 

and repeatability of the differential feature amplitudes. This is the first investigation to begin 

addressing the fundamental limitations of damage detection with coda wave differential features. 

 The fourth contribution of this thesis is an analysis of the signal-to-noise ratio (SNR) on 

the effectiveness of defect detection and measurement error. This analysis helps to determine the 

detection limits of coda waves for NDT&E, both in terms of noise level and transmitter-receiver 

separation (when combined with attenuation measurements).  

 The fifth contribution of this research is the definition and implementation of several 

different measures of coda wave attenuation to investigate their propagation behavior. When 
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combined with the SNR analysis, the attenuation measurements will potentially provide an 

estimate of the maximum transducer spacing for an SHM array, but this requires further work.  

 The sixth contribution of this thesis is an analysis of the repeatability, reciprocity, and 

reproducibility of coda waveforms and damage detection using differential signal features. This 

analysis demonstrates that coda waves are not noise, but are ultrasonic signals whose variation, as 

long as care is taken during data collection, is due to changes in the structure under investigation. 

The repeatability and reproducibility give further testament to the viability of using this method of 

damage detection for composite materials and indicate the potential for a reliable SHM inspection 

system. The reciprocity demonstrates that the transmitter and receiver can be interchanged. 

 The seventh contribution from this thesis is the comparison of coda wave behavior and 

damage detection for several materials of varying elastic properties, material models, and internal 

scattering. This demonstrates that coda wave NDT&E has the potential to be applicable for a wide 

range of materials, including those with little to no internal scattering. 

8.3 Recommendations for Future Work 

 The sensitivity of coda waves makes them very attractive for SHM and the quantitative 

damage detection demonstrated in this thesis shows the potential of this method for damage 

diagnosis. It is quite probable that coda wave differential features can detect micro-cracks and 

monitor fatigue damage. Further quantitative work is needed to examine feature behavior for other 

damage types and locations in addition to detecting damage in semi-infinite plates. The aim of 

future research should be to extend damage detection and diagnosis capabilities to realistic damage 

such as barely visible impact damage, micro-cracking, and fatigue. Future should also aim to 

determine the minimum necessary array size for large part inspection.  
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 The current drawbacks of coda wave NDE that prevent wider adoption are the difficulties 

in interpreting waveform changes and correlating them to specific damages/locations and the 

current lack of quantitative studies. Questions of sensitivity to different defects/damage, whether 

damage can be detected without a baseline, and effectiveness for arbitrary geometries still exist. 

Further research should consider these issues. Further investigation into the effects of external 

influences (e.g. temperature change) on feature amplitudes, the masking of damage, and mitigation 

methods is needed. Further investigation into the influence of sample geometry, transducer 

location, and damage location on damage detection and diagnosis is also needed. 
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